沥青是成分和结构极其复杂的有机物,与实际情况完全相符的沥青分子模型还未建立,现有模型是基于沥青的主要组分按照一定比例构建。常用的沥青分子模型包括美国公路战略研究计划(Strategic highway research program,SHRP)中建立的8种平均分子模型[89],以及Zhang等[90]在2007年建立的沥青三组分模型和随后SHRP计划中AAA-1沥青的修正四组分模型[91]。常用的四组分模型还包括Hansen等[92]在2013年提出的“Cooee”沥青模型以及Li等[93]在2014年提出的12分子模型,该模型在目前研究中使用最为广泛,在此基础上,Xu等[94]提出了包含20种分子类型的四组分沥青模型。与沥青分子模型不同,虽然矿料成分十分复杂,但其模型通常由简化的单晶模型代表,如石英(SiO2)或方解石(CaCO3)等。将单晶模型从特定方向解理成面,根据模型大小构建超晶胞,加入真空层形成约束构建集料模型。构建沥青-集料界面模型时,集料模型放置在底部,将添加约束层的沥青模型放置在集料顶部的真空层。沥青-集料界面模型需要添加边界约束,保证集料分子在模拟剪切和拉伸过程中不与沥青分子同时移动[95]。模拟潮湿环境下沥青混合料的水损害特征时,可以在沥青分子与矿物晶体之间添加界面水。典型的沥青-集料界面模型如图3所示[96]。
GuoF, PeiJ, ZhangJ, et al. Study on the adhesion property between asphalt binder and aggregate: a state-of-the-art review[J]. Construction and Building Materials, 2020, 256: No. 119474.
[2]
MehraraA, KhodaiiA. A review of state of the art on stripping phenomenon in asphalt concrete[J]. Construction and Building Materials, 2013, 38: 423-442.
[3]
CanestrariF, CardoneF, GrazianiA, et al. Adhesive and cohesive properties of asphalt-aggregate systems subjected to moisture damage[J]. Road Materials and Pavement Design, 2010, 11(): 11-32.
[4]
CaroS, MasadE, BhasinA, et al. Moisture susceptibility of asphalt mixtures, part 1: mechanisms[J]. International Journal of Pavement Engineering, 2008, 9(2): 81-98.
[5]
KakarM R, HamzahM O, ValentinJ. A review on moisture damages of hot and warm mix asphalt and related investigations[J]. Journal of Cleaner Production, 2015, 99: 39-58.
[6]
SoenenH, VansteenkisteS, de MaeijerP K. Fundamental approaches to predict moisture damage in asphalt mixtures: state-of-the-art review[J]. Infrastructures, 2020, 5(2): No.20.
WangLan, LuoXue-dong, ZhangQi, et al. Analysis of adhesion of warm mix rubber powder modified asphalt aggregates and water stability of the system[J]. Materals Reports, 2022, 36(8): 123-130.
[9]
GhabchiR, SinghD, ZamanM, et al. Micro-structural analysis of moisture-induced damage potential of asphalt mixes containing RAP[J]. Journal of Testing and Evaluation, 2016, 44(1): 194-205.
[10]
KimY R, LittleD, LyttonR. Fatigue and healing characterization of asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2003, 15(1): 75-83.
[11]
KimY R, LittleD N, LyttonR L. Effect of moisture damage on material properties and fatigue resistance of asphalt mixtures[J]. Transportation Research Record, 2004, 1891(1): 48-54.
[12]
YuX, BurnhamN A, TaoM. Surface microstructure of bitumen characterized by atomic force microscopy[J]. Advances in Colloid and Interface Science, 2015, 218: 17-33.
[13]
YaoH, LiuJ, XuM, et al. Discussion on molecular dynamics (MD) simulations of the asphalt materials[J]. Advances in Colloid and Interface Science, 2022, 299: No.102565.
[14]
McBainJ W, HopkinsD G. On adhesives and adhesive action[J]. The Journal of Physical Chemistry, 1925, 29(2): 188-204.
[15]
CanestrariF, FerrottiG, CardoneF, et al. Innovative testing protocol for evaluation of binder-reclaimed aggregate bond strength[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2444(1): 63-70.
[16]
PetersenJ, PlancherH, EnsleyE, et al. Chemistry of asphalt-aggregate interaction: relationship with pavement moisture-damage prediction test[J]. Transportation Research Record, 1982, 843: 95-104.
[17]
HeferA W, LittleD N, LyttonR L. A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water[J]. Journal of the Association of Asphalt Paving Technologists, 2005, 74(139): No.e196.
[18]
HuangS C, BranthaverJ F, RobertsonR E. Interaction of asphalt films with aggregate surfaces in the presence of water[J]. Road Materials and Pavement Design, 2002, 3(1): 23-48.
[19]
PetersenJ C, PlancherH. Model studies and interpretive review of the competitive adsorption and water displacement of petroleum asphalt chemical functionalities on mineral aggregate surfaces[J]. Petroleum Science and Technology, 1998, 16(1/2): 89-131.
[20]
TanY, GuoM. Using surface free energy method to study the cohesion and adhesion of asphalt mastic[J]. Construction and Building Materials, 2013, 47: 254-260.
ChenYan-juan.Surface activation technology of acid aggregate and adhesion mechanism[D]. Xi'an: School of Materials Science and Engineering, Chang'an University, 2012.
RenYu-na. Research on cohesion and adhesion properties of polymer modified asphalt[D]. Qingdao: College of Chemistry and Chemical Engineering, China University of Petroleum, 2011.
[25]
EnsleyE K. Multilayer adsorption with molecular orientation of asphalt on mineral aggregate and other substrates[J]. Journal of Applied Chemistry and Biotechnology, 1975, 25(9): 671-682.
PangXiao-yi. Asphalt and aggregate adhesion characteristics analysis based on the principle of AFM and the surface energy[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2015.
[28]
HuangS C, RobertsonR E. Rheology of thin asphalt films in contact with aggregate[J]. Road Materials and Pavement Design, 2006, 7(2): 179-199.
[29]
BagampaddeU, IsacssonU, KiggunduB M. Classical and contemporary aspects of stripping in bituminous mixes[J]. Road Materials and Pavement Design, 2004, 5(1): 7-43.
[30]
CaroS, MasadE, BhasinA, et al. Moisture susceptibility of asphalt mixtures, part 2: characterisation and modelling[J]. International Journal of Pavement Engineering, 2008, 9(2): 99-114.
[31]
周卫峰. 沥青与集料界面粘附性研究[D]. 西安: 长安大学材料科学与工程学院, 2002.
[32]
ZhouWei-feng. Study on adhesion of interface between asphalt and aggregate[D]. Xi'an: School of Materials Science and Engineering, Chang'an University, 2002.
[33]
陈斌华. 基于光电比色法的沥青与矿料粘附效应研究[D]. 西安: 长安大学公路学院, 2014.
[34]
ChenBin-hua. Based on the photoelectric colormetric method of asphalt and mineral aggregate adhesion effect [D]. Xi'an: School of Highway, Chang'an University, 2014.
[35]
宋艳茹, 张玉贞. 沥青粘附性能评价方法综述[J]. 石油沥青, 2005(3): 1-6.
[36]
SongYan-ru, ZhangYu-zhen. The evaluating methods' summary of asphalt adhesion[J]. Petroleum Asphalt, 2005(3): 1-6.
[37]
KanitpongK, BahiaH. Relating adhesion and cohesion of asphalts to the effect of moisture on laboratory performance of asphalt mixtures[J]. Transportation Research Record, 2005, 1901(1): 33-43.
[38]
ZhangJ, ApeagyeiA K, AireyG D, et al. Influence of aggregate mineralogical composition on water resistance of aggregate-bitumen adhesion[J]. International Journal of Adhesion and Adhesives, 2015, 62: 45-54.
XuQing-jie. Multi-scale analysis and evaluation method of asphalt-aggregate adhesion [D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2020.
WangWei-na, XuQing-jie, ZhouSheng-xiong, et al. A review on evaluation methods of asphalt-aggregate adhesion[J]. Materials Reports, 2019, 33(13): 2197-2205.
[43]
BlackmanB R, CuiS, KinlochA J, et al. The development of a novel test method to assess the durability of asphalt road-pavement materials[J]. International Journal of Adhesion and Adhesives, 2013, 42: 1-10.
[44]
CuiS, BlackmanB R, KinlochA J, et al. Durability of asphalt mixtures: effect of aggregate type and adhesion promoters[J]. International Journal of Adhesion and Adhesives, 2014, 54: 100-111.
[45]
MoL T. Damage development in the adhesive zone and mortar of porous asphalt concrete[D]. Netherlands: Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2010.
[46]
KanitpongK, BahiaH U. Role of adhesion and thin film tackiness of asphalt binders in moisture damage of HMA (with discussion)[J]. Journal of the Association of Asphalt Paving Technologists, 2003, 72: 502-528.
[47]
ChoD W, BahiaH U. Effects of aggregate surface and water on rheology of asphalt films[J]. Transportation Research Record, 2007, 1998(1): 10-17.
XiaoYue. Fracture mechanisms of binder-aggregate system and its effect on properties of asphalt mixtures [D].Wuhan: School of Materials Science and Engineering, Wuhan University of Technology, 2008.
[50]
HuangB, ShuX, DongQ, et al. Laboratory evaluation of moisture susceptibility of hot-mix asphalt containing cementitious fillers[J]. Journal of Materials in Civil Engineering, 2010, 22(7): 667-673.
[51]
VarveriA, AvgerinopoulosS, ScarpasA. Experimental evaluation of long-and short-term moisture damage characteristics of asphalt mixtures[J]. Road Materials and Pavement Design, 2016, 17(1): 168-186.
[52]
CollopA C, ChoiY, AireyG. Effects of pressure and aging in SATS test[J]. Journal of Transportation Engineering, 2007, 133(11): 618-624.
[53]
AbedA H, QasimZ I, Al-MosaweH, et al. The effect of hybrid anti-stripping agent with polymer on the moisture resistance of hot-mix asphalt mixtures[J]. Cogent Engineering, 2019, 6(1): No.1659125.
[54]
MurshedA M, TandonV, NazarianS, et al. Identification of moisture-susceptible asphalt concrete mixes using modified environmental conditioning system[J]. Transportation Research Record, 1998, 1630(1): 106-116.
[55]
Al-SwailmiS, TerrelR L. Evaluation of water damage of asphalt Concrete mixtures using the environmental conditioning system (Ecs)(with discussion)[J]. Journal of the Association of Asphalt Paving Technologists, 1992, 61: 405-445.
RenMin-da, FengHan-qing, CongLin, et al. Strength evolution law and mechanism analysis of asphalt mixtures during water saturation[J]. Journal of Building Materials, 2022, 25(5): 537-544.
[58]
ZhouL, HuangW, XiaoF, et al. Shear adhesion evaluation of various modified asphalt binders by an innovative testing method[J]. Construction and Building Materials, 2018, 183: 253-263.
[59]
KimY R, LutifJ S, BhasinA, et al. Evaluation of moisture damage mechanisms and effects of hydrated lime in asphalt mixtures through measurements of mixture component properties and performance testing[J]. Journal of Materials in Civil Engineering, 2008, 20(10): 659-667.
[60]
CopelandA R, YoutcheffJ, ShenoyA. Moisture sensitivity of modified asphalt binders: factors influencing bond strength[J]. Transportation Research Record, 2007, 1998(1): 18-28.
[61]
WasiuddinN M, SaltibusN E, MohammadL N. Novel moisture-conditioning method for adhesive failure of hot-and warm-mix asphalt binders[J]. Transportation Research Record, 2011, 2208(1): 108-117.
[62]
MoraesR, VelasquezR, BahiaH U. Measuring the effect of moisture on asphalt-aggregate bond with the bitumen bond strength test[J]. Transportation Research Record, 2011, 2209(1): 70-81.
[63]
MogawerW S, AustermanA J, BahiaH U. Evaluating the effect of warm-mix asphalt technologies on moisture characteristics of asphalt binders and mixtures[J]. Transportation Research Record, 2011, 2209(1): 52-60.
[64]
JúniorJ L L, BabadopulosL F, SoaresJ B. Moisture-induced damage resistance, stiffness and fatigue life of asphalt mixtures with different aggregate-binder adhesion properties[J]. Construction and Building Materials, 2019, 216: 166-175.
[65]
BagampaddeU, IsacssonU, KiggunduB. Impact of bitumen and aggregate composition on stripping in bituminous mixtures[J]. Materials and Structures, 2006, 39(3): 303-315.
[66]
BagampaddeU, IsacssonU, KiggunduB. Influence of aggregate chemical and mineralogical composition on stripping in bituminous mixtures[J]. The international Journal of Pavement Engineering, 2005, 6(4): 229-239.
DouYing-ying, LiXiao-min, YaoZhi-jie, et al. Adhesion and water stability of regenerated asphalt based on surface free energy[J]. Journal of Materials Science & Engineering, 2020, 38(4): 648-653.
ChengZhi-qiang, ZhangXiao-yan, KongFan-sheng,et al. Investigation on stripping behavior of asphalt Film using surface energy theory and pull-off test[J]. Materials Reports, 2020, 34(Sup.2): 1288-1294.
[71]
WasiuddinN M, ZamanM M, ORearE A. Effect of sasobit and aspha-min on wettability and adhesion between asphalt binders and aggregates[J]. Transportation Research Record, 2008, 2051(1): 80-89.
[72]
BhasinA, LittleD N, VasconcelosK L, et al. Surface free energy to identify moisture sensitivity of materials for asphalt mixes[J]. Transportation Research Record, 2007, 2001(1): 37-45.
[73]
WangW, ShenA, YangX, et al. Surface free energy method for evaluating the effects of anti-stripping agents on the moisture damage to asphalt mixtures[J]. Journal of Adhesion Science and Technology, 2020, 34(18): 1947-1970.
[74]
HamediG H, Moghadas NejadF. Using energy parameters based on the surface free energy concept to evaluate the moisture susceptibility of hot mix asphalt[J]. Road Materials and Pavement Design, 2015, 16(2): 239-255.
[75]
Al-RawashdehA S, SargandS. Performance assessment of a warm asphalt binder in the presence of water by using surface free energy concepts and nanoscale techniques[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 803-811.
WangDuan-lin, GuoXiu-lin, TangCheng. Bonding performance evaluation and verification between asphalt and aggregate based on true asphalt film thickness[J]. Journal of Building Materials, 2021, 24(3): 624-629.
[78]
YiJ, PangX, FengD, et al. Studies on surface energy of asphalt and aggregate at different scales and bonding property of asphalt-aggregate system[J]. Road Materials and Pavement Design, 2018, 19(5): 1102-1125.
[79]
MoraesR, VelasquezR, BahiaH. Using bond strength and surface energy to estimate moisture resistance of asphalt-aggregate systems[J]. Construction and Building Materials, 2017, 130: 156-170.
[80]
GuoM, TanY, ZhouS. Multiscale test research on interfacial adhesion property of cold mix asphalt[J]. Construction and Building Materials, 2014, 68: 769-776.
[81]
KimS H, JeongJ H, KimN. Use of surface free energy properties to predict moisture damage potential of asphalt concrete mixture in cyclic loading condition[J]. KSCE Journal of Civil Engineering, 2003, 7(4): 381-387.
[82]
ArabaniM, HamediG H. Using the surface free energy method to evaluate the effects of polymeric aggregate treatment on moisture damage in hot-mix asphalt[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 802-811.
[83]
HamediG H. Effects of polymeric coating the aggregate surface on reducing moisture sensitivity of asphalt mixtures[J]. International Journal of Civil Engineering, 2018, 16(9): 1097-1107.
MaXiang, HuXu-quan, WangLi-li. Study on the effect of water temperature coupling on asphalt bond performance based on surface free energy[J]. Forest Engineering, 2022, 38(4): 140-146.
HamediG H, MoghadasN F. Evaluating the effect of mix design and thermodynamic parameters on moisture sensitivity of hot mix asphalt[J]. Journal of Materials in Civil Engineering, 2017, 29(2): No.04016207.
[88]
MasadE A, ZollingerC, BulutR, et al. Characterization of HMA moisture damage using surface energy and fracture properties (With Discussion)[J]. Journal of the Association of Asphalt Paving Technologists, 2006, 75: 713-754.
[89]
LoeberL, SuttonO, MorelJ, et al. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39.
[90]
DasP K, BaajH, TigheS, et al. Atomic force microscopy to investigate asphalt binders: a state-of-the-art review[J]. Road Materials and Pavement Design, 2016, 17(3): 693-718.
[91]
TarefderR, ArifuzzamanM. A study of moisture damage in plastomeric polymer modified asphalt binder using functionalized AFM tips[J]. Journal of Systemics, Cybernetics and Informatics, 2011, 9(5): 1-12.
[92]
YaoZ, ZhuH, GongM, et al. Characterization of asphalt materials' moisture susceptibility using multiple methods[J]. Construction and Building Materials, 2017, 155: 286-295.
YiJun-yan, PangXiao-yi, YaoDong-dong, et al. Characterization of surface roughness and adhesive mechanism of asphalt and mineral aggregate based on atomic force microscopy method[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1111-1121.
[95]
XuM, YiJ, FengD, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12393-12403.
[96]
VasconcelosK L, BhasinA, LittleD N. History dependence of water diffusion in asphalt binders[J]. International Journal of Pavement Engineering, 2011, 12(5): 497-506.
[97]
dos SantosS, PartlM N, PoulikakosL D. Newly observed effects of water on the microstructures of bitumen surface[J]. Construction and Building Materials, 2014, 71: 618-627.
[98]
LyneÅ L, WallqvistV, BirgissonB. Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256.
[99]
YuX, BurnhamN A, MallickR B, et al. A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders[J]. Fuel, 2013, 113: 443-447.
DengYue, SunGuo-qiang, YuKe-xin, et al. Micro-Nano scale research methods for moisture damage of asphalt mixtures (1)—the application of AFM[J]. Petroleum Asphalt, 2018, 32(1): 31-37.
LiuKe-fei, DengLin-fei, ZhengJia-yu, et al. Moisture induced damage of various asphalt binders[J]. Chinese Journal of Materials Research, 2016, 30(10): 773-780.
[104]
TarefderR A, ZamanA M. Nanoscale evaluation of moisture damage in polymer modified asphalts[J]. Journal of Materials in Civil Engineering, 2010, 22(7): 714-725.
[105]
MedendorpC A. Atomic force microscopy method development for surface energy analysis[D]. Kentucky:College of Pharmacy, University of Kentucky, 2011.
[106]
ChenZ, PeiJ, LiR, et al. Performance characteristics of asphalt materials based on molecular dynamics simulation—a review[J]. Construction and Building Materials, 2018, 189: 695-710.
[107]
PauliA T, MiknisF, BeemerA, et al. Assessment of physical property prediction based on asphalt average molecular structures[C]//Chemistry of Petroleum and Emerging Technologies, Washington, DC,USA, 2005, 50(2): 255-259.
[108]
ZhangL, GreenfieldM L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3): 1712-1716.
[109]
ZhangL, GreenfieldM L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy & Fuels, 2008, 22(5): 3363-3375.
[110]
HansenJ S, LemarchandC A, NielsenE, et al. Four-component united-atom model of bitumen[J]. The Journal of Chemical Physics, 2013, 138(9): No.094508.
[111]
LiD D, GreenfieldM L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356.
[112]
XuM, YiJ, QiP, et al. Improved chemical system for molecular simulations of asphalt[J]. Energy & Fuels, 2019, 33(4): 3187-3198.
MaJian-min, SunGuo-qiang, HuMing-jun, et al.Micro-Nano scale research methods for the moisture damage of asphalt mixtures(3)—molecular dynamics simulation[J]. Petroleum Asphalt, 2018, 32(3): 42-47, 59.
[115]
SunW, WangH. Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: a molecular dynamics study[J]. Applied Surface Science, 2020, 510: No.145435.
[116]
XuG, WangH. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254.
[117]
WangH, LinE, XuG. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect[J]. International Journal of Pavement Engineering, 2017, 18(5): 414-423.
[118]
YaoH, DaiQ, YouZ. Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures[J]. Construction and Building Materials, 2015, 101: 536-547.
[119]
ZhengC, ShanC, LiuJ, et al. Microscopic adhesion properties of asphalt-mineral aggregate interface in cold area based on molecular simulation technology[J]. Construction and Building Materials, 2021, 268: No.121151.
[120]
LuoL, ChuL, FwaT. Molecular dynamics analysis of moisture effect on asphalt-aggregate adhesion considering anisotropic mineral surfaces[J]. Applied Surface Science, 2020, 527: No.146830.
[121]
LuY, WangL. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401.
[122]
LuY, WangL. Atomistic modelling of moisture sensitivity: a damage mechanisms study of asphalt concrete interfaces[J]. Road Materials and Pavement Design, 2017, 18(Sup.3): 200-214.
[123]
SwamyA K, MatoliaV, RamanaG. Interrelationship between uncompacted void content of aggregates and asphalt concrete properties[J]. Particulate Science and Technology, 2019, 37(5): 623-631.
WangZhi-xiang, LiJian-ge, ZhangZheng-qi. Effects of aggregate morphological characteristics on adhesion of aggregate‑asphalt and its moisture stability[J]. Journal of Building Materials, 2021, 24(5): 1039-1047.
[126]
王璐. 沥青-集料界面相结构和粘附机理研究[D]. 西安: 长安大学公路学院, 2014.
[127]
WangLu. Investigation of the interface structure and adhesion mechanism between asphalt and aggregate[D]. Xi'an: School of Highway, Chang'an University, 2014.
SuWen-chao. Experimental study on gravel particle shape effect on the performance of asphalt mixture[D]. Changsha: School of Traffic & Transportation Engineering, Changsha University, 2013.
[130]
AireyG, CollopA, ZoorobS, et al. The influence of aggregate, filler and bitumen on asphalt mixture moisture damage[J]. Construction and Building Materials, 2008, 22(9): 2015-2024.
[131]
CalaA, CaroS, LlerasM, et al. Impact of the chemical composition of aggregates on the adhesion quality and durability of asphalt-aggregate systems[J]. Construction and Building Materials, 2019, 216: 661-672.
YuJiang-miao, ZhouWen-li. Experimental study on gravel particle shape effect on the performance of asphalt mixture[J]. Materials Reports, 2021, 35(2): 2052-2056.
[134]
BlazekJ, SeborG, MaxaD. Effect of aggregate composition on asphalt-aggregate adhesion[J]. Petroleum and Coal, 2000, 42(1): 46-51.
[135]
HuangM, ZhangH, GaoY, et al. Study of diffusion characteristics of asphalt-aggregate interface with molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2021, 22(3): 319-330.
[136]
WangH, WangJ, ChenJ. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132: 104-119.
[137]
HossainM I, TarefderR A. Identifying damage in asphalt matrix materials surrounding an aggregate particle[J]. Construction and Building Materials, 2013, 49: 536-546.
[138]
AboQ S, AlS H. Effect of aggregate properties on asphalt mixtures stripping and creep behavior[J]. Construction and Building Materials, 2007, 21(9): 1886-1898.
DouYing-ying, WeiDing-bang, LiXiao-min,et al. Adhesion attenuation mechanism of asphalt-aggregate interface[J]. Journal of Building Materials, 2019, 22(5): 771-779.
[141]
KutayM E, AydilekA H. Pore pressure and viscous shear stress distribution due to water flow within asphalt pore structure[J]. Computer Aided Civil and Infrastructure Engineering, 2009, 24(3): 212-224.
[142]
NogueraJ A H, QuintanaH A R, GómezW D F. The influence of water on the oxidation of asphalt cements[J]. Construction and Building Materials, 2014, 71: 451-455.
ChengZhi-qiang, ZhangXiao-yan, KongFan-sheng. Moisture diffusion property into asphalt film[J]. Journal of Building Materials, 2021, 24(2): 399-404.
[147]
CaroS, MasadE, BhasinA, et al. Probabilistic modeling of the effect of air voids on the mechanical performance of asphalt mixtures subjected to moisture diffusion[J]. Asphalt Paving Technology, 2010, 79: 221-228.
[148]
MasadE, CastelblancoA, BirgissonB. Effects of air void size distribution, pore pressure, and bond energy on moisture damage[J]. Journal of Testing and Evaluation, 2006, 34(1): 15-23.
[149]
ArambulaE, MasadE, MartinA E. Influence of air void distribution on the moisture susceptibility of asphalt mixes[J]. Journal of Materials in Civil Engineering, 2007, 19(8): 655-664.
[150]
SchramS, AbdelrahmanM. Effects of asphalt film thickness on field performance[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 5(7): 600-628.
[151]
KiggunduB M, RobertsF L. Stripping in HMA mixtures: state-of-the-art and critical review of test methods[EB/OL]. [2022-11-04].
[152]
GaoJ, GuoC, LiuY. Measurement of pore water pressure in asphalt pavement and its effects on permeability[J]. Measurement, 2015, 62: 81-87.
[153]
LiS, ZhangH, SunL. Development and simulation measurement of dynamic hydraulic pressure[J]. Journal of Tongji University, 2007, 35(7): No.915.
[154]
LeiY, HuX, WangH, et al. Effects of vehicle speeds on the hydrodynamic pressure of pavement surface: measurement with a designed device[J]. Measurement, 2017, 98: 1-9.
WangYing, YangXi, JiangJi-bin.The micro process of water damage in asphalt mixture in seasonal frozen area under the dynamic water erosion[J]. Materials Reports, 2022, 36(10): 50-56.
[157]
FengD, YiJ, WangD, et al. Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China[J]. Cold Regions Science and Technology, 2010, 62(1): 34-41.
[158]
KutayM E, AydilekA H. Dynamic effects on moisture transport in asphalt concrete[J]. Journal of Transportation Engineering, 2007, 133(7): 406-414.
[159]
KringosN, ScarpasT, KasbergenC, et al. Modelling of combined physical-mechanical moisture-induced damage in asphaltic mixes, part 1: governing processes and formulations[J]. International Journal of Pavement Engineering, 2008, 9(2): 115-128.
ZhouLu, HuangWei-dong, LvQuan,et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials, 2021, 24(2): 377-384.
JiJie, MaRong-da, ZhengWen-hua, et al. Effect of DCLR and TLA on adhesion characteristics of asphalt and aggregate[J]. Journal of Chongqing Jiaotong University(Natural Science), 2018, 37(1): 54-61.
[164]
ChakravartyH, SinhaS. Moisture damage of bituminous pavements and application of nanotechnology in its prevention[J]. Journal of Materials in Civil Engineering, 2020, 32(8): No.03120003.
[165]
OlivieroR C, TeltayevB, AngelicoR. Adhesion promoters in bituminous road materials: a review[J]. Applied Sciences, 2017, 7(5): No.524.