To study the day-to-day route choice behavior of travelers under the mixed traffic flows of cars, conventional buses and customized buses and its impact on the traffic network, the characteristics of the three travel modes were analyzed first. At the same time, considering the exclusive bus lane as the public transit priority mode, the links were divided into links without exclusive bus lanes and links with exclusive bus lanes, so as to establish the link impedance function under mixed traffic flows. Based on the link impedance function, the traffic network theory was further used to establish the mixed day-to-day equilibrium model. A traffic network with multiple OD travel demand was selected for numerical simulation. The simulation results showed that the influence of experience dependence on customized bus travelers is greater than that on car travelers. Setting exclusive bus lanes can improve the route flows of customized buses, but the significance of the effect is different under different circumstances. When the proportion of conventional bus travelers is too large, the total travel time of all travelers may increase, while the larger the proportion of car travelers attracted by customized buses, the lower the total travel time, and whether the setting of exclusive bus lanes will reduce the total travel time is closely related to the size of these two proportions.
近几十年来,为了深入了解网络交通流量的演变过程和用户均衡状态的可达性,学者们对逐日交通流量分配模型进行了大量的研究。在针对多类出行者的研究中,一些研究者考虑了路网信息的来源,例如,Zhou等[5]假定部分出行者配备了先进出行者信息系统(Advanced traveler information system, ATIS)从而遵循确定性用户均衡原则,其余出行者遵循随机用户均衡原则,证明了两种出行者的相互作用会使路网最终演化至混合均衡状态;Zhang等[6]考虑了来自朋友的社交互动信息对路径选择的影响,利用累计前景理论 (Cumulative prospect theory, CPT) 建立了基于朋友出行信息的逐日路径选择模型并进行了实验,结果表明较大的社交互动率并不一定会给个人或系统带来更好的路径选择结果。还有一些研究者考虑了出行者异质,例如,尹子坤等[7]聚焦于出行者的信息偏好,在实验中发现,基于完全历史信息条件下被试者可由信息偏好系数均值被聚类为“平稳震荡型”“震荡下降型”“震荡上升型”;Lou等[8]根据出行者性格和交通信息来源,将出行者分为保守型出行者、未配备ATIS的冒险型出行者、配备ATIS的冒险型出行者,在数值模拟中发现半途中的路径切换行为对动态系统的稳定性和冒险旅行者的平均旅行时间都有影响;刘诗序等[9]设计了不同ATIS市场占有率下的行为实验,发现未配备ATIS的出行者的个体差异性比配备ATIS的小;常玉林等[10]考虑了车联网环境下网联车出行者对网联信息的服从度,建立了混合流量逐日均衡模型,并在仿真中发现遵从车联网信息出行者占比和对车联网信息的遵从程度为流量演变的主要影响因素。也有部分研究者考虑了不同出行方式下的逐日交通流量分配,例如,Wu等[11]基于随机用户均衡模型,建立了双模式网络交通流量的逐日演化模型,通过调整燃油税率和公交出发量来指导出行方式的选择,从而调节汽车出行比例,提高公交服务质量;寇钊[12]建立了公交—小汽车双模式交通收费-补贴动态优化模型,用于降低路网中的经济、环境总成本。
综上所述,现有的针对多类出行者的混合逐日交通流分配研究大多聚焦于小汽车和常规公交,而对定制公交考虑不足。实际上,除了提供新的交通方式,合理的交通管理措施也能有效缓解交通拥堵[13]。在过去的几十年里,公交专用道(Exclusive bus lane,EBL)得到广泛的应用[14]。鉴于定制公交是一种特殊的公共交通形式,它可以使用公交专用道出行。因此,公交专用道会对定制公交的路段出行时间产生影响,定制公交并不能被简单地处理为一个大容量的小汽车。相较于常规公交,定制公交单车运量较小,但线路选择更为灵活,所以现有的逐日交通分配模型并不能直接解决考虑定制公交及公交专用道的混合流逐日交通分配问题。因此,本文的主要贡献有:同时考虑定制公交及公交专用道,构建了不同路段的道路阻抗函数;引入逐日动态建模方法,提出了混合逐日均衡模型,并基于仿真结果探讨了3种交通流混合下的网络流量特性。
LuWen-hui. A multi-perspective study of urban traffic congestion[D]. Nanjing: School of Transportation, Southeast University, 2019.
[3]
李彬. 定制公交与定制公交客车的研究[D]. 西安: 长安大学汽车学院, 2013.
[4]
LiBin. The study of customized city bus service[D]. Xi'an: School of Automobile, Chang'an University, 2013.
[5]
LiuK J, LiuJ M, ZhangJ W. Heuristic approach for the multiobjective optimization of the customized bus scheduling problem[J]. IET Intelligent Transport Systems, 2022, 16(3): 277-291.
ShenMin-yu. Day-to-day flow dynamics with user learning under stochastic user equilibrium[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2016.
[8]
ZhouB, XuM, MengQ, et al. A day-to-day route flow evolution process towards the mixed equilibria[J]. Transportation Research Part C: Emerging Technologies, 2017, 82: 210-228.
[9]
ZhangC, LiuT L, HuangH J, et al. A cumulative prospect theory approach to commuters' day-to-day route-choice modeling with friends' travel information[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 527-548.
YinZi-kun, GuanHong-zhi, LiTao. Experimental analysis of diver's information preference under day-to-day traffic dynamics[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 234-240.
[12]
LouX M, ChengL, ChuZ M. Modelling travellers' en-route path switching in a day-to-day dynamical system[J]. Transportmetrica B: Transport Dynamics, 2017, 5(1): 15-37.
LiuShi-xu, WangZhi-yu, GuanHong-zhi, et al. Experiment and model of day-to-day route-choice behavior under different information[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 106-113.
ChangYu-lin, XuWen-qian, SunChao, et al. Day-to-day equilibrium of hybrid traffic considering obedience degree under internet of vehicles environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(4): 1085-1093.
[17]
WuJ, JiY, SunX, et al. Guidance optimization of travelers' travel mode choice based on fuel tax rate and bus departure quantity in two-mode transportation system[J]. Journal of Advanced Transportation, 2020(10): 1-10.
KouZhao. Day-to-day traffic evolution model and week-to-week intervention strategies for bi-modal networks[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2021.
[20]
YaoJ, ShiF, ShiA, et al. Evaluation of exclusive bus lanes in a bi-modal degradable road network[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 36-51.
[21]
ZhengF, ChenJ, WangH, et al. Developing a dynamic utilisation scheme for exclusive bus lanes on urban expressways: an enhanced CTM‐based approach versus a microsimulation‐based approach[J]. IET Intelligent Transport Systems, 2020, 14(12): 1657-1664.
SiBing-feng, ZhongMing, GaoZi-you. A link resistance function of urban mixed traffic network[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 35(1): 68-73.
ChenFang, LongJian-cheng. Optimum design of city bus lane based on bi-level programming[J]. Journal of Hefei University of Technology (Natural Science Edition), 2016, 39(3): 296-302.
SiBing-feng, YangXiao-bao, GaoLiang. System optimization based bus-lane network design model and algorithm[J]. Chinese Journal of Management Science, 2016, 24(6): 106-114.