To address the challenge of estimation accuracy degradation resulting from off-grid caused by compressive sensing-like direction of arrival (DOA) estimation algorithm in polarization-sensitive arrays, this paper presents a joint estimation algorithm for two-dimensional DOA and polarization parameters utilizing the theory of atomic norm minimization (ANM) applied to a single dipole array. Firstly, the proposed algorithm constructs receiving models for different polarization directions using the orthogonal polarization sensitive array's characteristics, which can accommodate the influence of polarization parameters and adhere to the ANM model. Secondly, the algorithm solves a positive semi-definite programming problem to obtain a positive semi-definite Toeplitz matrix, from which DOA information is recovered using the matrix-pencil algorithm. Lastly, the polarization parameters are retrieved using the DOA information and the generalized eigenvalue theory. The effectiveness and superiority of the proposed algorithm are demonstrated through simulation experiments.
波达方向(Direction of arrival, DOA)估计是阵列信号处理的重要分支,被广泛应用于雷达、声呐和通信等诸多领域。在DOA估计实际应用到的阵列中,极化敏感阵列相比传统标量阵列具有更强的抗干扰能力、更稳定的检测能力和更高的分辨率,因此在近年来逐渐成为研究热点,很多应用于标量阵列的DOA估计算法也逐渐被推广至极化敏感阵列中。经典的多重信号分类(Multiple signal classification, MUSIC)算法在文献[1]中被扩展为一种空域DOA信息和极化域信息联合估计的秩亏MUSIC算法,适用于多种极化敏感阵列。文献[2]提出的基于极化敏感圆阵的二维降维MUSIC算法,相比于传统MUSIC算法有更高的估计精度,但是在进行二维DOA估计时会产生一个四维谱峰搜索,导致运算量变大、计算时间变长。旋转不变技术信号参数估计(Estimating signal parameters via rotational invariance techniques, ESPRIT)算法[3]在文献[4]中被推广至极化敏感阵列中,相比于秩亏MUSIC算法,该算法降低了算法复杂度,但对阵列摆放形式和电磁矢量传感器的要求比较严格,需要特殊的阵列类型。
FerraraE, ParksT. Direction finding with an array of antennas having diverse polarizations[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(2): 231-236.
[2]
HeZ, TianZ, ZhouM, et al. DOA estimation method for polarization sensitive circular array based on reduced-dimensional MUSIC[C]∥IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Denver, USA, 2022: 427-428.
[3]
RoyR, KailathT. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995.
[4]
LiJ, ComptonR T. Angle and polarization estimation using ESPRIT with a polarization sensitive array[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(9): 1376-1383.
[5]
TianY, SunX, ZhaoS. Sparse-reconstruction-based direction of arrival, polarization and power estimation using a cross-dipole array[J]. IET Radar, Sonar & Navigation, 2015, 9(6): 727-731.
[6]
ChaliseB K, ZhangY D, HimedB. Compressed sensing based joint DOA and polarization angle estimation for sparse arrays with dual-polarized antennas[C]∥IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 251-255.
WangHong-yan, YuRuo-nan, PanMian, et al. Off-grid DOA estimation method based on covariance matrix reconstruction[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2863-2870.
ChenTao, ZhaoLi-peng, ShiLin. Signal parameter estimation algorithm for orthogonal dipole array based on finite rate of innovation[J]. Journal of Electronics & Information Technology, 2022,44(7):2469-2477.
[11]
HuB, ShenX Y, JiangM, et al. Off-grid DOA estimation based on compressed sensing on multipath environment[J]. International Journal of Antennas and Propagation, 2023, 1: 9315869.
[12]
TangG, BhaskarB N, ShahP, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465-7490.
[13]
PanY, YaoM, LuoG Q . et al. Underdetermined direction-of-arrival estimation with coprime array via atomic norm minimization[J]. Radio Engineering, 2020, 29(2): 405-413.
[14]
YangZ, XieL, StoicaP. Vandermonde decomposition of multilevel toeplitz matrices with application to multi-mensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685-3701.
[15]
ZhangX, ZhengZ, WangW Q.DOA estimation of coherent sources using coprime array via atomic norm minimization[J]. IEEE Signal Processing Letters, 2022, 29: 1312-1316.
[16]
WuY, WakinM B, GerstoftP. Gridless DOA estimation with multiple frequencies[J]. IEEE Transactions on Signal Processing, 2023, 71: 417-432.
[17]
WagnerM, ParkY, GerstoftP. Gridless DOA estimation and root-music for non-uniform linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 2144-2157.
ChenTao, LiMin-xing, GuoLi-min. DOA estimation of polarization sensitive array based on atomic norm minimization[J]. Acta Electronica Sinica, 2023,51(4):835-842.
[20]
ZhangZ, WangY, TianZ. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95-106.