虫草素对RSL3诱导肝癌HepG2细胞铁死亡的增强作用及其机制

林涵 ,  杨秋燕 ,  钟洁月 ,  陈博伦 ,  童汪霞

吉林大学学报(医学版) ›› 2025, Vol. 51 ›› Issue (03) : 576 -589.

PDF (3420KB)
吉林大学学报(医学版) ›› 2025, Vol. 51 ›› Issue (03) : 576 -589. DOI: 10.13481/j.1671-587X.20250303
基础研究

虫草素对RSL3诱导肝癌HepG2细胞铁死亡的增强作用及其机制

作者信息 +

Improvement effect of cordycepin on ferroptosis in HepG2 cells induced by RSL3 and its mechanism

Author information +
文章历史 +
PDF (3501K)

摘要

目的 探讨虫草素对铁死亡诱导剂RSL3诱导肝癌HepG2细胞铁死亡的增强作用,并阐明其潜在的作用机制。 方法 HepG2细胞分为对照组,RSL3组,低、中和高剂量虫草素组,RSL3组+低、中和高剂量虫草素组,RSL3+虫草素(中剂量)+铁死亡抑制剂Ferrostatin-1(Fer-1)组和RSL3+虫草素(中剂量)+铁死亡抑制剂Liproxstatin-1(Lip-1)组。采用0、1、5、10、15和20 μmol·L-1 RSL3分别干预HepG2、Huh-7及HCCLM3细胞24、48以及72 h,采用细胞计数试剂盒8(CCK-8)法检测各细胞活性,筛选RSL3最佳作用浓度和作用时间。分别采用0、50、100、200、400、600、800、1 000和1 200 μmol·L-1虫草素干预HepG2细胞24、48及72 h,采用CCK-8法检测细胞存活率,计算半数抑制浓度(IC50)值,筛选虫草素最佳作用浓度和作用时间。使用凋亡抑制剂Z-VAD-FMK、细胞自噬抑制剂Chloroquine(CQ)、细胞坏死性凋亡抑制剂Necrostatin-1(Nec-1)、Fer-1、Lip-1、Deferasirox和四甲基哌啶氧化物(TEMPO)分别干预HepG2细胞,计算HepG2细胞存活率。2',7'-二氯荧光素二乙酸酯(DCFH-DA)荧光探针法检测各组HepG2细胞中活性氧(ROS)水平,C11 BODIPY 581/591荧光探针法检测各组HepG2细胞中脂质过氧化(LPO)水平,FeRhoNox-1荧光探针法检测各组HepG2细胞中亚铁离子(Fe2+)水平,试剂盒检测HepG2细胞中谷胱甘肽(GSH)和丙二醛(MDA)水平,Western blotting法检测各组HepG2细胞中铁死亡相关蛋白、核转录因子E2相关因子2(Nrf2)和血红素氧合酶1(HO-1)蛋白表达水平,透射电镜观察各组HepG2细胞超微结构形态表现。 结果 CCK-8法,0.56 μmol·L-1 RSL3干预细胞时,3种细胞活性差异较明显。与0 μmol·L-1 RSL3组比较,6.4和12.8 μmol·L-1 RSL3组3种细胞存活率均明显降低(P<0.05)。HepG2细胞的IC50值最大,因此选择HepG2细胞进行后续实验。与0 μmol·L-1虫草素组比较,200、400、600、800、1 000和2 000 μmol·L-1虫草素组HepG2细胞存活率均明显降低(P<0.05或P<0.01)。选择0.5倍IC50值(267.9 μmol·L-1)、1倍IC50值(535.8 μmol·L-1)和1.5倍IC50值(803.7 μmol·L-1)分别作为低、中及高剂量虫草素组,干预时间为24 h。与对照组比较,低、中和高剂量虫草素组HepG2细胞存活率均明显降低(P<0.05或P<0.01)。与低、中和高剂量虫草素组比较,Z-VAD-FMK+低、中和高剂量虫草素组HepG2细胞存活率均明显升高(P<0.05或P<0.01),Fer-1+中和高剂量虫草素组及Lip-1+低、中和高剂量虫草素组HepG2细胞存活率均明显升高(P<0.05)。与对照组比较,RSL3组、RSL3+低、中和高剂量虫草素组、RSL3+虫草素+Fer-1组和RSL3+虫草素+Lip-1组HepG2细胞存活率均明显降低(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞存活率均明显降低(P<0.05)。DCFH-DA荧光探针法,与对照组比较,中和高剂量虫草素组、RSL3组和RSL3+低、中和高剂量虫草素组细胞中ROS水平均明显升高(P<0.05或P<0.01);与RLS3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中ROS水平均明显升高(P<0.05或P<0.01)。C11 BODIPY 581/591荧光探针法,与对照组比较,中和高剂量虫草素组、RSL3组和RSL3+低、中和高剂量虫草素组HepG2细胞中LPO水平均明显升高(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中LPO水平均明显升高(P<0.05或P<0.01)。FeRhoNox-1荧光探针法,与对照组比较,中和高剂量虫草素组、RSL3组和RSL3+低、中和高剂量虫草素组HepG2细胞中Fe2+水平均明显升高(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中Fe2+水平均明显升高(P<0.05或P<0.01)。与对照组比较,高剂量虫草素组、RSL3组和RSL3+低、中和高剂量虫草素组HepG2细胞中MAD水平均明显升高(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中MAD水平均明显升高(P<0.05或P<0.01)。与对照组比较,中和高剂量虫草素组、RSL3组和RSL3+低、中和高剂量虫草素组HepG2细胞中GSH水平均明显降低(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中GSH水平均明显降低(P<0.05)。与对照组比较,低和中剂量虫草素组HepG2细胞超微结构变化不明显,高剂量虫草素组部分细胞线粒体嵴减少,线粒体膜可见轻度肿胀和膜密度增高,线粒体膜中内膜结构轻度扭曲,RSL3组和RSL3+低、中及高剂量虫草素组均表现出铁死亡细胞超微结构变化;与RSL3组比较,RSL3+低、中和高剂量虫草素组表现为细胞线粒体膜破裂并伴有膜密度增高,线粒体膜中的内膜结构异常扭曲或扩张,线粒体嵴减少甚至消失。Western blotting法,与对照组比较,中和高剂量虫草素组HepG2细胞中FTH1和GPX4蛋白表达水平均明显降低(P<0.05或P<0.01),Nrf2和HO-1蛋白表达水平均明显降低(P<0.05或P<0.01),RSL3组和RSL3+虫草素+Fer-1组HepG2细胞中GPX4蛋白表达水平均明显降低(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中GPX4蛋白表达水平均明显降低(P<0.05)。 结论 虫草素具有明显增强RSL3诱导肝癌HepG2细胞铁死亡的作用,并能够下调HepG2细胞中Nrf2和HO-1蛋白表达。

Abstract

Objective To discuss the enhancing effect of cordycepin on ferroptosis inducer RSL3-induced ferroptosis in the hepatocellular carcinoma HepG2 cells, and to clarify its potential mechanism. Methods The HepG2 cells were divided into control group, RSL3 group, low, medium and high doses of cordycepin groups, RSL3+low, medium and high doses of cordycepin groups, RSL3+medium-dose cordycepin+ferroptosis inhibitor Ferrostatin-1 (Fer-1) group, and RSL3+medium-dose cordycepin+ferroptosis inhibitor Liproxstatin-1 (Lip-1) group. The HepG2, Huh-7 and HCCLM3 cells were treated with 0, 1, 5, 10, 15 and 20 μmol·L-1 RSL3 for 24, 48 and 72 h, respectively. Cell counting kit-8(CCK-8) method was used to detect cell viability and determine the optimal concentration and treatment time of RSL3. The HepG2 cells were treated with 0, 50, 100, 200, 400, 600, 800, 1 000, and 1 200 μmol·L-1 cordycepin for 24, 48 and 72 h, respectively. CCK-8 method was used to detect the survival rate of the cells and the half maximal inhibitory concentration (IC50) was calculated to determine the optimal concentration and treatment time of cordycepin; the apoptosis inhibitor Z-VAD-FMK, autophagy inhibitor Chloroquine (CQ), necroptosis inhibitor Necrostatin-1 (Nec-1), Fer-1, Lip-1, Deferasirox and 2,2,6,6-tetramethylpiper idinoxy(TEMPO) were used to treat HepG2 cells, and the survival rate of the cells was calculated; 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence probe was used to detect reactive oxygen species (ROS) levels in the HepG2 cells in various groups; C11 BODIPY 581/591 fluorescence probe was used to detect lipid peroxidation (LPO) levels in the HepG2 cells in various groups; FeRhoNox-1 fluorescent probe was used to detect ferrous ion (Fe2+) levels in the HepG2 cells in various groups; kits were used to detect glutathione (GSH) and malondialdehyde (MDA) levels in the HepG2 cells; Western blotting method was used to detect the expression levels of ferroptosis-related proteins, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins in the hepG2 cells in various groups; transmission electron microscope was used to observe the ultrastructural morphology of the HepG2 cells in various groups. Results The CCK-8 results showed that when the cells were treated with 0.56 μmol·L⁻¹ RSL3, the viabilities of the three cell types differed significantly. Compared with 0 μmol·L⁻¹ RSL3 group, the survival rates of the cells in 6.4 and 12.8 μmol·L-1 RSL3 groups were significantly decreased (P<0.05). The HepG2 cells had the highest IC50 value and were selected for subsequent experiments. Compared with 0 μmol·L-1 cordycepin group, the survival rates of the HepG2 cells in 200, 400, 600, 800, 1 000, and 2 000 μmol·L-1 cordycepin groups were significantly decreased (P<0.05 or P<0.01). 0.5×IC50 (267.9 μmol·L-1), 1×IC50 (535.8 μmol·L-1) and 1.5×IC50 (803.7 μmol·L-1) were selected as low, medium and high doses of cordycepin groups, respectively, with an intervention time of 24 h. Compared with control group, the survival rates of the HepG2 cells in low, medium, and high doses of cordycepin groups were significantly decreased (P<0.05). Compared with low, medium, and high doses of cordycepin groups, the survival rates of the HepG2 cells in Z-VAD-FMK+low, medium, and high doses of cordycepin groups were significantly increased (P<0.01), and those in Fer-1+medium and high doses of cordycepin groups and Lip-1+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05). Compared with control group, the survival rates of the HepG2 cells in RSL3 group, RSL3+low, medium, and high doses of cordycepin groups, RSL3+cordycepin+Fer-1 group and RSL3+cordycepin+Lip-1 group were significantly decreased (P<0.05 or P<0.01). Compared with RSL3 group, the survival rates of the HepG2 cells in RSL3+low, medium, and high doses of cordycepin groups were significantly decreased (P<0.05). The DCFH-DA results showed that compared with control group, the ROS levels in the cells in medium and high doses of cordycepin groups, RSL3 group and RSL3+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). The C11 BODIPY 581/591 results showed that compared with control group, the LPO levels in the HepG2 cells in medium and high doses of cordycepin groups, RSL3 group and RSL3+low, medium and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). Compared with RSL3 group, the LPO levels in the HepG2 cells in RSL3+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). The FeRhoNox-1 results showed that compared with control group, the Fe2+ levels in the HepG2 cells in medium and high doses of cordycepin groups, RSL3 group and RSL3+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). Compared with RSL3 group, the Fe2+ levels in the HepG2 cells in RSL3+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). Compared with control group, the MDA levels in the HepG2 cells in high doses of cordycepin group, RSL3 group and RSL3+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). Compared with RSL3 group, the MDA levels in the HepG2 cells in RSL3+low, medium, and high doses of cordycepin groups were significantly increased (P<0.05 or P<0.01). Compared with control group, the GSH levels in the HepG2 cells in medium and high doses of cordycepin groups, RSL3 group and RSL3+low, medium, and high doses of cordycepin groups were significantly decreased (P<0.05 or P<0.01). Compared with RSL3 group, the GSH levels in the HepG2 cells in RSL3+low, medium, and high doses cordycepin groups were significantly decreased (P<0.05 or P<0.01). Compared with control group, the ultrastructure of the HepG2 cells in low and medium doses of cordycepin groups showed no significant changes, while the cells in high dose of cordycepin group exhibited reduced mitochondrial cristae, mild swelling and increased membrane density, with slightly distorted inner membrane structure. The cells in RSL3 group and RSL3+low, medium, and high doses of cordycepin groups all showed ultrastructural changes characteristic of ferroptosis. Compared with RSL3 group, the cells in RSL3+low, medium, and high doses of cordycepin groups exhibited ruptured mitochondrial membranes with increased membrane density, abnormally twisted or expanded inner membrane structures, and reduced or even disappeared mitochondrial cristae. The Western blotting results showed that compared with control group, the expression levels of FTH1 and GPX4 proteins in the HepG2 cells in medium and high doses of cordycepin groups were significantly decreased (P<0.05 or P<0.01), while the expression levels of Nrf2 and HO-1 proteins were significantly decreased (P<0.05 or P<0.01). Compared with control group, the expression levels of GPX4 protein in the HepG2 cells in low, medium and high doses of cordycepin groups, RSL3 group, and RSL3+cordycepin+Fer-1 group were significantly decreased (P<0.05). Compared with RSL3 group, the expression levels of GPX4 protein in the HepG2 cells in RSL3+low, medium, and high doses of cordycepin groups were significantly decreased (P<0.05). Conclusion Cordycepin can significantly enhance RSL3-induced ferroptosis in the hepatocellular carcinoma HepG2 cells and down-regulate the expression of Nrf2 and HO-1 proteins in the HepG2 cells.

Graphical abstract

关键词

肝细胞癌 / 虫草素 / 铁死亡 / RSL3 / 核因子E2相关因子2/血红素氧合酶1信号通路

Key words

Hepatocellular carcinoma / Cordycepin / Ferroptosis / RSL3 / Nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway

引用本文

引用格式 ▾
林涵,杨秋燕,钟洁月,陈博伦,童汪霞. 虫草素对RSL3诱导肝癌HepG2细胞铁死亡的增强作用及其机制[J]. 吉林大学学报(医学版), 2025, 51(03): 576-589 DOI:10.13481/j.1671-587X.20250303

登录浏览全文

4963

注册一个新账户 忘记密码

原发性肝癌是一种临床上常见的恶性肿瘤,其主要类型为肝细胞癌(hepatocellular carcinoma,HCC),占全部患者的90%以上1-2。肝癌具有恶性程度高、易转移和治疗后易复发的特点3。尽管目前已有很多治疗手段,如手术切除、放疗和化疗等,但HCC患者的预后仍然较差4-5。以索拉菲尼为代表的靶向治疗药物,以程序性死亡受体1(programmed cell death protein-1,PD-1)及细胞程序性死亡配体1(programmed cell death-ligand 1,PD-L1)为靶点的免疫调节治疗为HCC患者带来了新的希望6。但靶向免疫治疗的有限性仅能够使不到三分之一的患者从中受益,且中位生存期仅可延长3个月左右7。促使研究者需寻找新的、高效且不良反应小的肝癌治疗药物以提高其临床疗效。
铁死亡是一种铁依赖性磷脂过氧化作用驱动的新型细胞程序性死亡方式,已被证实在肝癌的发生发展中发挥重要的调控作用8。癌细胞发生铁死亡的2个中心事件即细胞内铁积累和脂质过氧化(lipid peroxidation,LPO)。包括经典[半胱氨酸剥 夺 诱 导 途 径、谷 胱 甘 肽 过 氧 化 物 酶 4(glutathione peroxidase 4,GPX4)抑制途径和甲氧戊酸途径]和非经典途径(脂代谢途径、铁代谢途径和氧化应激途径)在内的众多调节通路,最终能增加铁浓度和活性氧(reactive oxygen species,ROS),进而诱发铁死亡。核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)/血红素氧合酶1(heme oxygenase-1,HO-1)抗氧化轴在抗氧化应激中起关键作用。Nrf2激活后,随着其下游靶点蛋白HO-1、膜铁转运蛋白40A1(solute carrier family 40 member 1,SLC40A1)、GPX4和铁蛋白重链1(ferritin heavy polypeptide 1,FTH1)等上调可以减少氧化应激,从而保护线粒体完整性。在病理条件下细胞内会发生过度氧化应激,进而发生铁死亡。因此,抑制Nrf2/HO-1抗氧化通路的激活可能会导致氧化应激和细胞内铁积累增加,并诱导铁死亡。已有研究9证实:可以通过药物调节Nrf2/HO-1/GPX4抗氧化机制,诱导HCC细胞铁凋亡,从而抑制HCC的发生发展。
虫草素可通过各种分子机制来抑制肝癌生长10-13。研究14显示:虫草素能通过Nrf2/HO-1/核因子κB(nuclear factor-κB,NF-κB)通路抑制体外肝癌细胞生长、迁移和侵袭。但虫草素对HCC恶性进展的抑制作用是否与铁死亡有关尚未完全阐明。本研究探讨虫草素抑制肝癌进展与铁死亡的关系,通过Nrf2/HO-1抗氧化轴分析虫草素促进肝癌铁死亡的作用机制,以期为肝癌的治疗和新药的开发提供理论依据。

1 材料与方法

1.1 细胞、主要试剂和仪器

人肝癌HepG2细胞和Huh-7细胞(武汉普诺赛生命科技有限公司),人肝癌HCCLM3细胞(苏州海星生物科技有限公司)。虫草素(纯度>98%,上海源叶生物科技有限公司),DMEM培养基和胎牛血清(武汉普诺赛生命科技有限公司),铁死亡抑制剂Ferrostatin-1(Fer-1)、Liproxstatin-1(Lip-1)、四甲基哌啶氧化物(2,2,6,6-tetramethylpiper idinoxy,TEMPO)、Deferasirox和铁死亡诱导剂(RSL3)(美国GlpBio公司),BCA蛋白定量C11-BODIPY试剂盒(美国GlpBio公司),谷胱甘肽(glutathione,GSH)检测试剂盒、丙二醛(malondialdehyde,MDA)检测试剂盒和细胞计数试剂盒8(cell counting kit-8,CCK-8)(北京索莱宝科技有限公司),FeRhoNox-1试剂盒(上海懋康生物科技有限公司),2',7'-二氯荧光素二乙酸酯(2',7'-dichlorofluorescein diacetate,DCFH-DA)荧光探针(上海碧云天生物技术股份有限公司),兔抗GPX4、兔抗FTH1、兔抗溶质载体家族7成员11(solute carrier family 7 member 11,SLC7A11)、HO-1、SCL40A1、Nrf2多克隆抗体和甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)多克隆抗体(美国ABclonal公司)。CO2细胞培养箱(型号:CLM-170B-8-NF,太仓艺斯高医疗器械科技有限公司),多模式酶标仪(型号:Infinite200PRO,瑞士Tecan公司),流式细胞仪(型号:CytoFlex,美国Beckman Coulter公司),凝胶成像分析系统(型号:Universal HoodⅡ,美国Bio-Rad公司),共聚焦显微镜(型号:ZVP12-10,北京卓立汉光仪器有限公司),透射电子显微镜(型号:JEM 1400,上海百贺仪器科技有限公司)。

1.2 细胞培养及分组

Huh-7和HepG2细胞于含10%胎牛血清及1%双抗的DMEM培养液中培养,人肝癌HCCLM3细胞于TCH-G456培养基中培养。将HepG2细胞分为对照组、RSL3组、低、中和高剂量虫草素组、RSL3组+低、中和高剂量虫草素组、RSL3+虫草素(中剂量)+Fer-1组和RSL3+虫草素(中剂量)+Lip-1组。

1.3 CCK-8法检测各组肝癌细胞存活率

取处于对数生长期且生长状态良好的细胞,将细胞以每孔1×105个细胞的密度接种于96孔细胞培养板中,置于37 ℃培养箱中继续培养。待细胞贴壁后,采用0、1、5、10、15和20 μmol·L-1 RSL3分别干预HepG2、Huh-7及HCCLM3细胞24、48和72 h,采用CCK-8法检测各组细胞活性,筛选RSL3最佳作用浓度和作用时间。分别采用0、50、100、200、400、600、800、1 000和1 200 μmol·L-1虫草素干预HepG2细胞24、48及72 h,采用CCK-8法检测细胞存活率,计算半数抑制浓度(half maximal inhibitory concentration,IC50)值,筛选虫草素最佳作用浓度和作用时间。使用凋亡抑制剂Z-VAD-FMK(10 μmol·L-1)、细胞自噬抑制剂Chloroquine(CQ,25 μmol·L-1)、细胞坏死性凋亡抑制剂Necrostatin-1(Nec-1, 10 μmol·L-1)、Fer-1(10 μmol·L-1)、Lip-1(0.4 μmol·L-1)、Deferasirox(18 μmol·L-1)和TEMPO(10 μmol·L-1)分别干预HepG2细胞,计算HepG2细胞存活率。各组细胞干预完成后加入10 μL CCK-8溶液,37 ℃孵育30 min,采用酶标仪于波长450 nm处测定吸光度(A)值,计算细胞存活率。细胞存活率=(实验组A值-空白组A值)/(对照组A值-空白组A值)×100%。

1.4 DCFH-DA荧光探针法检测各组HepG2细胞中ROS水平

将细胞以1.6×105个的密度接种于小皿中,37 ℃培养过夜。24 h后,弃培养液,冲洗3次后于每个共聚焦小皿中加入1 mL DCFH-DA稀释液,37 ℃孵育20 min,原位装载探针,无血清培养液冲洗3次,共聚焦显微镜拍照采集图像,采用Image J软件计算平均荧光强度,以平均荧光强度代表各组HepG2细胞中ROS水平。

1.5 C11 BODIPY 581/591荧光探针法检测各组HepG2细胞中脂质过氧化(lipid peroxidation,LPO)水平

将细胞以1×105个的密度接种于共聚焦小皿中,37 ℃培养过夜,加入C11-BODIPY工作液,于37 ℃下继续孵育30 min后,共聚焦显微镜拍照,采用Image J软件计算相对荧光强度,以相对荧光强度代表各组HepG2细胞中LPO水平。

1.6 FeRhoNox-1荧光探针法检测各组HepG2细胞中亚铁离子(ferrous iron,Fe2+)水平

将细胞以1×105个的密度接种于共聚焦小皿中,37 ℃培养过夜,加入FeRhoNox-1孵育细胞,1 h后使用共聚焦显微镜拍照,采用Image J软件计算相对荧光强度,以相对荧光强度代表各组HepG2细胞中Fe2+水平。

1.7 试剂盒检测各组HepG2细胞中GSH和MDA水平

将细胞以1×105个的密度接种于共聚焦小皿中,37 ℃培养过夜。收集细胞裂解液,按照相应试剂盒说明书操作,检测各组细胞中GSH和MDA水 平。GSH水平(μg·106 cell)=样 本 浓 度(mg·L-1)/细 胞 数 量(×105),MDA水平(nmol·104 cell)=53.763×△A/细胞总数(×104)×稀释倍数。

1.8 Western blotting法检测各组肝癌细胞中铁死亡相关蛋白、Nrf2和HO-1蛋白表达水平

RIPA裂解细胞后采用BCA蛋白测定试剂盒测定蛋白浓度。SDS-PAGE电泳分离蛋白,将其转移至PVDF膜。10%脱脂牛奶室温下孵育封闭2 h。将PVDF膜与兔抗Nrf2单克隆抗体(1∶20 000)、HO-1/HMOX1兔多克隆抗体(1∶20 000)、SLC7A11/xCT兔单克隆抗体(1∶20 000)、GPX4兔多克隆KO抗体(1∶20 000)、FTH1兔单克隆抗体 (1∶20 000)和GAPDH一抗(1∶20 000)共孵育,次日与二抗(1∶2 000)共孵育,增强化学试剂可视化蛋白,Image J软件分析蛋白条带灰度值,计算目的蛋白表达水平。目的蛋白表达水平=目的蛋白条带灰度值/内参蛋白条带灰度值。

1.9 透射电镜观察各组HepG2细胞超微结构形态表现

细胞浸入2.5%戊二醛中,室温固定24 h后,浸入1%锇酸室温固定2 h,清洗。用梯度乙醇使样本脱水,浸入到渗透剂A中2 h,再浸入渗透剂B中室温过夜。将样本包埋后依次放入37 ℃和60 ℃烘箱内分别烘烤12 h。使用超薄切片机进行切片,厚度为60~80 nm。完成铅铀双染后采用透射电镜拍摄细胞器形态表现。

1.10 统计学分析

采用SPSS 27.0统计软件进行统计学分析。各组肝癌细胞存活率,HepG2细胞中ROS、Fe2+、LPO、MDA和GSH水平,细胞中SLC7A11、SCL40A1、FTH1、GPX4、Nrf2和HO-1蛋白表达水平均符合正态分布,以x±s表示,多组间样本均数比较采用单因素方差分析,组间样本均数两两比较采用LSD-t检验。以P<0.05为差异有统计学意义。

2 结 果

2.1 不同浓度RSL3干预后HepG2、Huh-7和HCCLM3细胞存活率

0.56 μmol·L-1 RSL3干预细胞时,3种细胞活性差异较明显。与0 μmol·L-1 RSL3组比较,6.4和12.8 μmol·L-1 RSL3组3种细胞存活率均明显降低(P<0.05或P<0.01)。RSL3对3种细胞的IC50值分别为:HepG2细胞9.658 0 μmol·L-1,Huh-7细胞0.649 6 μmol·L-1,HCCLM3细胞8.302 0 μmol·L-1。由于HepG2细胞的IC50值最大,提示其对RSL3的耐受性最强,因此选择HepG2细胞进行后续实验。见图1

2.2 不同浓度虫草素干预后HepG2细胞存活率

虫草素干预HepG2细胞24 h时IC50值为535.8 μmol·L-1,因此后续实验均以24 h为虫草素干预时间。与0 μmol·L-1虫草素组比较,200、400、600、800、1 000和2 000 μmol·L-1虫草素组HepG2细胞存活率均明显降低(P<0.05或P<0.01)。由于2.0倍IC50值浓度的虫草素干预下,细胞存活率较低,无法进行后续实验,因此选择0.5倍IC50值(267.9 μmol·L-1)、1倍IC50值(535.8 μmol·L-1)和1.5倍IC50值(803.7 μmol·L-1)分别作为低、中及高剂量虫草素组,干预时间为24 h。见图2

2.3 不同铁死亡抑制剂干预后各组HepG2细胞存活率

与对照组比较,低、中和高剂量虫草素组HepG2细胞存活率均明显降低(P<0.05或P<0.01);与低、中和高剂量虫草素组比较,Z-VAD-FMK+低、中和高剂量虫草素组HepG2细胞存活率均明显升高(P<0.05或P<0.01),Nec-1+低、中和高剂量虫草素组、CQ+低、中和高剂量虫草素组、Deferasirox+低、中和高剂量虫草素组及TEMPO+低、中和高剂量虫草素组HepG2细胞存活率差异均无统计学意义(P>0.05),Fer-1+中和高剂量虫草素组及Lip-1+低、中和高剂量虫草素组HepG2细胞存活率均明显升高(P<0.05),Fer-1+低剂量虫草素组HepG2细胞存活率差异无统计学意义(P>0.05)。见图3

2.4 各组HepG2细胞存活率

与对照组比较,RSL3组、RSL3+低、中和高剂量虫草素组、RSL3+虫草素+Fer-1组和RSL3+虫草素+Lip-1组HepG2细胞存活率均明显降低(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞存活率均明显降低(P<0.05)。见图4

2.5 各组HepG2细胞中ROS水平

与对照组比较,中和高剂量虫草素组、RSL3组及RSL3+低、中和高剂量虫草素组细胞中ROS水平均明显升高(P<0.05或P<0.01),低剂量虫草素组HepG2细胞中ROS水平差异无统计学意义(P>0.05)。与RLS3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中ROS水平均明显升高(P<0.05或P<0.01)。见图56

2.6 各组HepG2细胞中LPO水平

与对照组比较,中及高剂量虫草素组、RSL3组和RSL3+低、中及高剂量虫草素组HepG2细胞中LPO水平均明显升高(P<0.05或P<0.01),低剂量虫草素组HepG2细胞中LPO水平差异无统计学意义(P>0.05);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中LPO水平均明显升高(P<0.05或P<0.01)。见图78

2.7 各组HepG2细胞中Fe2+水平

与对照组比较,中和高剂量虫草素组、RSL3组及RSL3+低、中和高剂量虫草素组HepG2细胞中Fe2+水平均明显升高(P<0.05或P<0.01),低剂量虫草素组HepG2细胞中Fe2+水平差异无统计学意义(P>0.05);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中Fe2+水平均明显升高(P<0.05或P<0.01)。见图910

2.8 各组HepG2细胞中MAD和GSH水平

与对照组比较,高剂量虫草素组、RSL3组和RSL3+低、中及高剂量虫草素组HepG2细胞中MAD水平均明显升高(P<0.05或P<0.01),低和中剂量虫草素组HepG2细胞中MAD水平差异无统计学意义(P>0.05);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中MAD水平均明显升高(P<0.05或P<0.01)。见图11

与对照组比较,中和高剂量虫草素组、RSL3组和RSL3+低、中及高剂量虫草素组HepG2细胞中GSH水平均明显降低(P<0.05或P<0.01),低剂量虫草素组HepG2细胞中GSH水平差异无统计学意义(P>0.05);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中GSH水平均明显降低(P<0.05)。见图12

2.9 各组HepG2细胞超微结构形态表现

与对照组比较,低和中剂量虫草素组HepG2细胞超微结构变化不明显,高剂量虫草素组部分HepG2细胞线粒体嵴减少,线粒体膜可见轻度肿胀和膜密度增高,线粒体膜中内膜结构轻度扭曲,RSL3组和RSL3+低、中及高剂量虫草素组均表现有铁死亡细胞超微结构变化;与RSL3组比较,RSL3+低、中和高剂量虫草素组表现为细胞线粒体膜破裂并伴有膜密度增高,线粒体膜中的内膜结构异常扭曲或扩张,失去正常的圆柱形结构,线粒体嵴减少甚至消失。见图13

2.10 各组HepG2细胞中铁死亡相关蛋白和Nrf2及HO-1蛋白表达水平

与对照组比较,低、中和高剂量虫草素组HepG2细胞中SLC7A11和SCL40A1蛋白表达水平差异无统计学意义(P>0.05),中和高剂量虫草素组HepG2细胞中FTH1、GPX4、Nrf2和HO-1蛋白表达水平均明显降低(P<0.05或P<0.01)。见图14

与对照组比较,RSL3组、RSL3+虫草素+ Fer-1组HepG2细胞中GPX4蛋白表达水平均明显降低(P<0.05或P<0.01);与RSL3组比较,RSL3+低、中和高剂量虫草素组HepG2细胞中GPX4蛋白表达水平均明显降低(P<0.05)。见图15

3 讨 论

DIXON等15发现:Erastin可以促进Ras突变的癌细胞发生铁死亡。铁死亡诱导剂呈现出广阔的临床应用前景16-19。然而,多数铁死亡诱导剂存在毒性不良反应,如RSL3系统性地靶向GPX4会导致肾和神经毒性,限制其临床应用20-21。因此,寻求新的治疗药物优化铁死亡诱导剂的生物学分布和药代动力学,同时通过提升对铁死亡靶点和机制的高选择性以提高铁死亡诱导剂的药物敏感性十分重要。

本研究结果显示:虫草素在较高剂量时可诱导HepG2细胞铁死亡,但在铁死亡诱导剂RSL3的基础上联用虫草素后,即使是较低剂量虫草素的情况下,仍可观察到HepG2细胞的Fe2+水平明显升高,GSH水平明显降低,细胞中ROS和MDA水平明显升高,同时下调GPX4的表达,提示虫草素对铁死亡诱导剂RSL3产生增强作用。本研究结果显示:虫草素干预后Nrf2和HO-1蛋白表达水平明显降低,SLC7A11和SCL40A1蛋白表达水平无明显变化,提示虫草素的抗肝癌作用可能与其通过抑制Nrf2/HO-1抗氧化轴增强RSL3诱导肝癌细胞铁死亡的能力有关,而非经典途径中的SLC7A11和SCL40A1途径。

虫草素对铁死亡诱导剂RSL3产生增强作用的机制可能与虫草素通过ROS扩增环作为铁死亡增强剂的作用有关。虫草素的抗肿瘤作用与氧化应激或ROS水平升高有关22-23。LIN等24发现:虫草素干预SCC-4肝癌细胞12 h后,可观察到线粒体功能障碍(线粒体裂变)和氧化应激。BI等25通过建立转铁蛋白缀合脂质体,将虫草素递送至肝癌细胞,结果显示:ROS的产生增加并引起肝癌细胞线粒体跨膜去极化。而氧化应激或ROS的升高则与Nrf2/HO-1抗氧化轴密切相关26。Nrf2/HO-1轴因其对抗氧化应激的关键作用而在细胞防御机制中发挥重要作用。Nrf2激活后会导致其下游靶点HO-1和GPX4的上调,进而减少氧化应激,保护线粒体完整性。但抑制Nrf2/HO-1的激活可能导致氧化应激和细胞内铁积累增加,并可能诱导铁死亡27。Nrf2/HO-1抗氧化轴与铁死亡呈负相关关系29-30]

综上所述,虫草素可增强RSL3诱导肝癌HepG2细胞铁死亡的作用,并可下调HepG2细胞中Nrf2和HO-1蛋白表达。

参考文献

[1]

HARTKE JJOHNSON MGHABRIL M. The diagnosis and treatment of hepatocellular carcinoma[J]. Semin Diagn Pathol201734(2): 153-159.

[2]

LLOVET J MKELLEY R KVILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers20217(1): 6.

[3]

VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med2019380(15): 1450-1462.

[4]

WONG K MKING G GHARRIS W P. The treatment landscape of advanced hepatocellular carcinoma[J]. Curr Oncol Rep202224(7): 917-927.

[5]

贾建国, 马向明, 田菲, 甘油三酯与高密度脂蛋白胆固醇比值(TG/HDL-C)对原发性肝癌发病的影响[J]. 临床肝胆病杂志202440(4): 753-759.

[6]

KELLEY R KRIMASSA LCHENG A L, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial[J]. Lancet Oncol202223(8): 995-1008.

[7]

MCGLYNN K APETRICK J LEL-SERAG H B. Epidemiology of hepatocellular carcinoma[J]. Hepatology202173(): 4-13.

[8]

STOCKWELL B R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell2022185(14): 2401-2421.

[9]

YANG R YGAO W HWANG Z B, et al. Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis[J]. Phytomedicine2024122: 155135.

[10]

GUO Z RCHEN WDAI G S, et al. Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4[J]. Int J Mol Med202045(1): 141-150.

[11]

LU QMEI W JLUO S H, et al. Apoptosis of Bel-7402 human hepatoma cells induced by a ruthenium(Ⅱ) complex coordinated by cordycepin through the p53 pathway[J]. Mol Med Rep201511(6): 4424-4430.

[12]

RADHI MASHRAF SLAWRENCE S, et al. A systematic review of the biological effects of cordycepin[J]. Molecules202126(19): 5886.

[13]

ZHOU Y LGUO Z HMENG Q F, et al. Cordycepin affects multiple apoptotic pathways to mediate hepatocellular carcinoma cell death[J]. Anticancer Agents Med Chem201717(1): 143-149.

[14]

ZENG Y MLIAN S YLI D F, et al. Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice[J]. Biomed Pharmacother201795: 1868-1875.

[15]

DIXON S JLEMBERG K MLAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell2012149(5): 1060-1072.

[16]

HSIEH C HHSIEH H CSHIH F S, et al. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment[J]. Theranostics202111(14): 7072-7091.

[17]

KHAN AHUO YGUO Y L, et al. Ferroptosis is an effective strategy for cancer therapy[J]. Med Oncol202441(5): 124.

[18]

KREMER D MNELSON B SLIN L, et al. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis[J]. Nat Commun202112(1): 4860.

[19]

ZHANG YTAN HDANIELS J D, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model[J]. Cell Chem Biol201926(5): 623-633.e9.

[20]

CHENG LJIN XLU W Y, et al. Effect and involved mechanism of RSL3-induced ferroptosis in acute leukemia cells MOLM13 and drug-resistant cell lines[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi202129(4): 1109-1118.

[21]

HAO W YSUN NFAN Y Y, et al. Targeted ferroptosis-immunotherapy synergy: enhanced antiglioma efficacy with hybrid nanovesicles comprising NK cell-derived exosomes and RSL3-loaded liposomes[J]. ACS Appl Mater Interfaces202416(22): 28193-28208.

[22]

王柏乔, 何宇轩, 高京, 中药干预间充质干细胞衰老的研究进展[J]. 郑州大学学报(医学版)202459(6): 746-751.

[23]

TANIA MSHAWON JSAIF K, et al. Cordycepin downregulates cdk-2 to interfere with cell cycle and increases apoptosis by generating ROS in cervical cancer cells: in vitro and in silico study[J]. Curr Cancer Drug Targets201919(2): 152-159.

[24]

LIN L TLAI Y JWU S C, et al. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer[J]. J Food Drug Anal201826(1): 135-144.

[25]

BI Y EZHOU Y LWANG M Q, et al. Targeted delivery of cordycepin to liver cancer cells using transferrin-conjugated liposomes[J]. Anticancer Res201737(9): 5207-5214.

[26]

DONG J LLI YXIAO H W, et al. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2[J]. Toxicol Appl Pharmacol2019364: 12-21.

[27]

任晓彤, 余顺杰, 郭欣雨, 骨髓增生异常综合征CD34+细胞焦亡相关分子焦孔素E研究[J]. 中国实用内科杂志202444(1): 68-74.

[28]

YANG J WMO J JDAI J J, et al. Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer[J]. Cell Death Dis202112(11): 1079.

[29]

杨 俊, 黄欣林, 覃汉俊, 纳米凝胶搭载的siRNA通过靶向抑制施万细胞铁死亡促进周围神经损伤修复[J]. 中国医学物理学杂志202441(4): 495-503.

基金资助

国家自然科学基金项目(82060843)

国家自然科学基金项目(82260860)

广西壮族自治区科技厅青年科学基金项目(2018GXNSFBA281189)

AI Summary AI Mindmap
PDF (3420KB)

452

访问

0

被引

详细

导航
相关文章

AI思维导图

/