血管性痴呆(vascular dementia,VaD)是一种获得性智能障碍综合征,由各种脑血管疾病引起脑功能障碍,属于血管性认知障碍
[1]。VaD是最常见的老年期痴呆疾病之一,发病率随着年龄的增加而升高,患病人数占全部老年痴呆人数的15%~20%,仅次于阿尔茨海默病
[2-4]。VaD的主要病理改变为脑血管损伤导致的脑组织病变,如多发性皮层和皮层下梗死等,主要临床表现为认知和行为障碍。随着疾病的进展,相关症状也逐渐加重,对患者的生活质量产生严重影响,并给家庭、社会和医疗保健系统造成巨大的压力
[5-6]。因此,明确VaD的发生发展机制并寻找有效的干预手段对于VaD的治疗具有重要意义。
在正常条件下,神经元内的失能线粒体会通过自噬清除,以维持正常的能量代谢和细胞内环境的稳态
[7]。本课题组前期研究
[8]和相关研究
[9]结果显示:VaD发生时,神经元处于氧化应激状态,活性氧(reactive oxygen species,ROS)大量产生,ROS水平升高对线粒体有害,并通过多种机制扩散至周围线粒体,使细胞广泛产生损伤性氧化应激,导致线粒体自噬的广泛发生。解除该状态可抑制自噬进而改善神经组织损伤
[10]。
间充质干细胞(mesenchymal stem cells,MSCs)具有可进行自体移植和组织来源丰富等优势
[11]。研究
[12-13]表明:MSCs通过分泌细胞因子和释放细胞外囊泡等方式,塑造有利于组织修复的微环境,从而促进损伤修复。MSCs还能够减少氧化损伤,并通过抑制细胞凋亡提高受损组织细胞的存活率
[14-16]。MSCs还可通过调节神经元自噬水平改善神经元凋亡,显示出潜在的神经保护作用
[17]。然而,其在神经系统疾病中的具体作用机制仍需进一步探讨。
目前,MSCs通过调节氧化应激及线粒体自噬改善VaD的认知状态及其修复作用机制的研究较少。本研究使用骨髓来源的间充质干细胞(bone marrow-derived MSCs,BMSCs),通过尾静脉注射至VaD模型大鼠体内,观察其对VaD大鼠的治疗作用,并评估BMSCs对大鼠海马神经元氧化应激状态及线粒体自噬的调控情况,旨在为VaD的研究提供新的思路。
1 材料与方法
1.1 实验动物、细胞、主要试剂及仪器
8~10周龄雄性SPF级SD大鼠45只,体质量(300±40)g,购自长沙市天勤生物技术有限公司,动物生产许可证号:SCXK(湘)2022-0011。大鼠饲养于清洁级动物房,环境温度保持在20 ℃~24 ℃,相对湿度为50%~70%,每日12 h明暗交替,自由进食和饮水,适应性饲养1周后进行实验。本研究获得湖北省中西医结合医院伦理委员会批准,伦理审批号:(2023)伦审第(研002)号。所有参与实验的人员均通过湖北省实验动物从业人员专业技术考试并取得合格证书,实验过程严格遵循3R原则及动物福利相关规定,并给予实验动物人道关怀。大鼠BMSCs购自赛业生物科技有限公司。核因子E2相关因子2(nuclear factor erythroid 2-related factor,Nrf2)抑制剂ML385(美国MedChemExpress公司),HE染色试剂盒(北京索莱宝科技有限公司),尼氏染液(武汉四维加生物科技有限公司),RIPA裂解液(上海碧云天生物科技有限公司),BCA蛋白浓度测定试剂盒(美国赛默飞世尔科技公司),ECL化学发光试剂盒(北京兰杰柯科技有限公司),二氢乙锭(Dihydroethidium,DHE)和4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI)染色液(美国Sigma公司),抗荧光淬灭封片剂(美国Southern Biotech公司),磷酸酶与张力蛋白同源物诱导激酶1(phosphatase and tensin homolog induced putative kinase 1,PINK1)抗体、E3泛素蛋白连接酶parkin(E3 ubiquitin-protein ligase parkin,Parkin)抗体、血红素加氧酶1(heme oxygenase-1,HO-1)抗体、泛素结合蛋白P62(ubiquitin-binding protein P62,P62)抗体、苄氯素1(Beclin-1)抗体和微管相关蛋白1A/1B轻链3(microtubule-associated proteins 1A/1B light chain 3,LC3)抗体(美国Abclonal公司),Nrf2抗体(武汉三鹰生物技术有限公司)。Morris水迷宫视频分析系统(型号:SA20,江苏赛昂斯生物科技有限公司),病理切片机(型号:RM2016)、超薄切片机(型号:LEICA UC7)和正置荧光显微镜(型号:LEICA DM2000LED)均购自德国LEICA公司,透射电镜(型号:JEM-1400,日 本 电 子 株 式 会 社),冰 冻 切 片 机(型 号:CRYOSTAR NX50,美国赛默飞世尔科技公司),扫描仪(型号:Pannoramic MIDI,匈牙利3DHISTECH公司),电泳槽(型号:DYCZ-24,北京六一生物科技有限公司)。
1.2 实验动物造模、分组及给药
45只SD大鼠适应性喂养7 d后随机分为假手术组、模型组、空载组、BMSCs组和BMSCs+ML385组(联合组),每组9只。各组大鼠腹腔注射麻醉后,除假手术组外,其余各组大鼠行双侧颈总动脉分次结扎手术,制备VaD模型(改良2VO模型)。手术过程中,各组大鼠经碘伏消毒皮肤后沿颈正中线切开,分离周围组织,暴露右侧颈总动脉,并在近心端及远心端结扎后切断。逐层缝合皮肤及肌肉,待苏醒后正常喂养。1周后,以相同方式结扎并切断左侧颈总动脉,完成造模。假手术组大鼠仅暴露双侧颈总动脉后立即缝合,其他操作同上。造模成功7 d后,将BMSCs以2×106 mL-1的细胞密度通过尾静脉注射1 mL至BMSCs组和联合组大鼠体内;假手术组和模型组大鼠则以相同方式注射1 mL生理盐水;空载组大鼠通过尾静脉注射1 mL磷酸盐缓冲液(phosphate buffer saline,PBS)。联合组大鼠将ML385溶于含5%二甲基亚砜(dimethyl sulfoxide,DMSO)的PBS缓冲液中,在BMSCs移植前3 d开始注射(30 mg·kg-1),持续7 d,其余组大鼠均以相同方式接受等量含5% DMSO的PBS缓冲液。Morris水迷宫实验测试结束后处死大鼠取脑组织,将部分脑组织置于4%多聚甲醛中固定,其余组织液氮速冻后储存于-80 ℃冰箱中备用。
1.3 Morris水迷宫实验检测各组大鼠学习记忆能力
第1~5天为定位航行实验,确定第一至第四象限位置,将逃生平台置于第四象限,第1天水面低于平台1 cm,第2~5天水面没过平台。按相同顺序依次从4个象限中点将大鼠放入水中,记录各组大鼠寻找平台时间,每次时间限制为120 s,若大鼠在120 s内找到平台并停留3 s以上,则认为大鼠找到平台,记录该时间为逃避潜伏期;若120 s内未找到平台则诱导其在平台上站立10 s。第6天进行空间探索实验,检测大鼠学习记忆能力。撤去原平台,将大鼠从各象限中点放入水中,记录大鼠120 s内穿越原平台区域次数和目标象限停留时间。
1.4 HE染色观察各组大鼠脑组织病理形态表现
各组大鼠脑组织置于4%多聚甲醛中固定,常规石蜡包埋、切片。石蜡切为4 µm薄片,二甲苯透明,梯度乙醇水化,采用HE染色试剂盒染色,脱水透明封片,于显微镜下观察各组大鼠脑组织病理形态表现。
1.5 尼氏染色观察各组大鼠脑组织海马区尼氏体变化情况
制作石蜡组织切片过程同“1.4”。石蜡切片经尼氏染液染色2~5 min,蒸馏水稍洗,根据组织着色深浅用0.1%冰醋酸对切片进行分化,置入65 ℃烤箱中烘干,中性树胶封片,显微镜下观察各组大鼠脑组织尼氏体变化情况。
1.6 透射电镜观察各组大鼠脑组织海马区超微结构
取1 mm3大小新鲜海马组织,迅速投入电镜固定液中4 ℃固定4 h。PBS缓冲液漂洗3次后,1%锇酸20 ℃固定2 h,PBS缓冲液漂洗3次后乙醇梯度脱水,使用丙酮及812包埋剂包埋,采用超薄切片机进行切片,2%醋酸铀饱和水溶液及枸橼酸铅双染色,透射电镜观察各组大鼠脑组织海马区超微结构。
1.7 荧光探针法检测各组大鼠脑组织海马区神经元中ROS水平
将大鼠脑组织制成冰冻切片,实验前将切片置于室温平衡30 min,PBS缓冲液洗涤3次,滴加DHE 探针,室温下避光孵育30 min,PBS缓冲液洗涤3次,每次5 min,DAPI染色液室温避光孵育10 min,PBS缓冲液洗涤3次,每次5 min,抗荧光淬灭封片剂封片,荧光显微镜观察并拍照。采用Image J软件分析荧光强度,以荧光强度代表ROS水平。
1.8 Western blotting法检测各组大鼠脑组织海马区中Nrf2、HO-1、PINK1、Parkin、Beclin-1和P62蛋白表达水平及LC3-Ⅱ/LC3-Ⅰ比值
将冻存的大鼠脑组织海马区取出,添加适量RIPA裂解液匀浆,静置30 min。4 ℃、12 000 r·min-1离心15 min吸取上清液,BCA法检测蛋白浓度并加入上样缓冲液,加热10 min使蛋白变性。取SDS-PAGE凝胶上样并开启电泳分离蛋白,并转移至PVDF膜。转膜完毕后,以5%脱脂奶粉作为封闭液,置于摇床中缓慢摇动,室温封闭1 h。参照一抗说明书配制一抗稀释液,4 ℃孵育过夜。TBST溶液洗涤3次,每次5 min,参照二抗说明书配制二抗稀释液,室温孵育1 h,TBST溶液洗涤3次,每次5 min,ECL化学发光剂显影,采用Image J软件分析蛋白条带灰度值,以β-actin为内参,计算目的蛋白表达水平。目的蛋白表达水平=目的蛋白条带灰度值/内参蛋白条带灰度值。
1.9 统计学分析
采用SPSS 23.0统计软件进行统计学分析。各组大鼠逃避潜伏期、穿越平台次数、原平台停留时间,脑组织中ROS水平和Nrf2、HO-1、PINK1、Parkin、P62及Beclin-1蛋白表达水平以及LC3-Ⅱ/LC3-Ⅰ比值均符合正态分布,以x±s表示,多组间样本均数比较采用单因素方差分析,组间样本均数两两比较采用LSD-t检验。以P<0.05为差异有统计学意义。
2 结 果
2.1 各组大鼠逃避潜伏期、穿越原平台次数和停留时间
与假手术组比较,模型组大鼠逃避潜伏期明显延长(
P<0.01),穿越原平台次数和停留时间均明显减少(
P<0.01);与模型组比较,BMSCs组大鼠逃避潜伏期明显缩短(
P<0.01),穿越原平台次数和停留时间均明显增加(
P<0.01),空载组大鼠逃避潜伏期、穿越原平台次数和停留时间差异均无统计学意义(
P>0.05);与BMSCs组比较,联合组大鼠逃避潜伏期明显延长(
P<0.01),穿越原平台次数和停留时间均明显减少(
P<0.01)。见
图1和
表1。
2.2 各组大鼠脑组织病理形态表现
假手术组大鼠脑组织海马区神经元数量和形态正常,染色均匀,结构清晰,未见明显病变;与假手术组比较,模型组大鼠脑组织海马区组织稀疏,结构紊乱,神经元数量减少、形态不一,染色不均匀,核固缩,可见部分坏死的神经元;与模型组比较,空载组大鼠脑组织海马区可见组织结构紊乱,神经元减少及染色不均等损伤表现,BMSCs组大鼠脑组织海马区神经元损伤减轻,形态恢复正常,排列较为整齐,神经元丢失情况明显改善;与BMSCs组比较,联合组大鼠脑组织海马区神经元形态不规则,组织结构紊乱,细胞边界不清,染色不均匀,核固缩。见
图2。
2.3 各组大鼠海马区尼氏体变化情况
假手术组大鼠脑组织海马区神经元排列整齐紧密,形态规则完整,核仁明显,尼氏小体着色深且数量多;与假手术组比较,模型组大鼠脑组织海马区神经元固缩,呈空泡状,尼氏小体着色少且数量稀少;与模型组比较,空载组大鼠脑组织海马区可见尼氏小体着色少且数量稀少等损伤表现,BMSCs组大鼠脑组织海马区神经元固缩减少,细胞形态相对完整,尼氏小体数量相对增多;与BMSCs组比较,联合组大鼠脑组织神经元固缩,形态完整性丧失,尼氏小体破碎、数量减少。见
图3。
2.4 各组大鼠脑组织海马区超微结构
假手术组大鼠脑组织海马区神经元线粒体呈椭圆形,双层膜结构清晰可见,内部嵴完整;与假手术组比较,模型组大鼠脑组织海马区神经元线粒体肿胀变形,双层膜结构被破坏,内部嵴断裂消失,结构模糊,胞质中可见大量自噬小体;与模型组比较,空载组大鼠脑组织海马区线粒体损伤表现仍较明显,胞质中自噬小体数量较多,BMSCs组大鼠脑组织海马区神经元线粒体膜和内部结构有明显改善,损伤程度减轻,胞质中可见少量自噬小体;与BMSCs组比较,联合组大鼠脑组织海马区神经元线粒体肿胀,双层膜结构破坏,内部嵴断裂消失,胞质中可见自噬小体。见
图4。
2.5 各组大鼠脑组织海马区神经元中ROS水平
与假手术组比较,模型组大鼠脑组织海马区神经元中ROS水平明显升高(
P<0.01);与模型组比较,BMSCs组大鼠脑组织海马区神经元中ROS水平明显降低(
P<0.01),空载组大鼠脑组织海马区ROS水平差异无统计学意义(
P>0.05);与BMSCs组比较,联合组大鼠脑组织海马区神经元中ROS水平明显升高(
P<0.01)。见
图5和
表2。
2.6 各组大鼠脑组织中Nrf2和HO-1蛋白表达水平
与假手术组比较,模型组大鼠脑组织中Nrf2和HO-1蛋白表达水平均明显降低(
P<0.01);与模型组比较,BMSCs组大鼠脑组织中Nrf2和HO-1蛋白表达水平均明显升高(
P<0.01),空载组大鼠脑组织中Nrf2和HO-1蛋白表达水平差异均无统计学意义(
P>0.05);与BMSCs组比较,联合组大鼠脑组织中Nrf2和HO-1蛋白表达水平均明显降低(
P<0.01)。见
图6。
2.7 各组大鼠脑组织中Parkin、PINK1、P62和Beclin-1蛋白表达水平及LC3-Ⅱ/LC3-Ⅰ比值
与假手术组比较,模型组大鼠脑组织中Parkin、PINK1和Beclin-1蛋白表达水平及LC3-Ⅱ/LC3-Ⅰ比值均明显升高(
P<0.01),P62蛋白表达水平明显降低(
P<0.01);与模型组比较,BMSCs组大鼠脑组织中Parkin、PINK1和Beclin-1蛋白表达水平及LC3-Ⅱ/LC3-Ⅰ比值均明显降低(
P<0.01),P62蛋白表达水平明显升高(
P<0.01),空载组大鼠脑组织中Parkin、PINK1和Beclin-1和P62蛋白表达水平及LC3-Ⅱ/LC3-Ⅰ比值差异均无统计学意义(
P>0.05);与BMSCs组比较,联合组大鼠脑组织中Parkin、PINK1和Beclin-1蛋白表达水平及LC3-Ⅱ/LC3-Ⅰ比值均明显升高(
P<0.01),P62蛋白表达水平明显降低(
P<0.01)。见
图7。
3 讨 论
VaD是与年龄相关的、由脑血流灌注不足所致缺血缺氧或血管病变引起的认知和记忆功能障碍,是临床常见的老年疾病
[18]。其致病机制尚未明确,主要包括胆碱能系统的损伤、神经炎症、自由基的毒性和突触可塑性等
[2,19]。氧化应激是各种病理过程的主要体征之一,ROS过量产生会进一步加重脑血管和神经退行性疾病的脑组织损伤
[20]。
当细胞处于应激状态时,如缺血缺氧、氧化应激反应增强、ROS过量生成或自噬破坏等,会激活Nrf2
[21]。激活的Nrf2在细胞核中积累,调节靶基因的转录及编码并参与抗氧化剂的合成、解毒、代谢和炎症等过程
[22-23]。本研究结果显示:与假手术组比较,模型组大鼠脑组织中Nrf2和HO-1蛋白表达水平降低,ROS水平明显升高。提示VaD大鼠海马神经元的Nrf2调节途径受损,ROS无法及时清除,导致受损神经元氧化应激状态无法调节。
当神经元处于氧化应激状态时,线粒体产生大量ROS,其通过线粒体通透性过渡孔(mitochondrial permeability transition pore,mPTP)进入胞质内,引起大量线粒体发生非特异性自噬,细胞能量合成功能受损,引起神经元凋亡
[9]。作为VaD发生发展的重要机制,过度的线粒体自噬会导致神经元正常功能的丧失
[24]。本研究结果显示:与假手术组比较,模型组大鼠脑组织中线粒体自噬相关蛋白表达上调,海马神经元超微结构显示线粒体损伤严重,自噬小体明显增多。
研究
[14, 25]显示:MSCs对认知障碍起重要作用,还能够调节神经元的氧化应激状态。增强Nrf2活性可以减轻缺血后神经认知障碍及氧化应激状态,缓解神经元自噬
[26-27]。因此,经ROS/Nrf2信号改善神经元氧化应激状态,调控线粒体自噬可能是BMSCs治疗血管性痴呆的有效靶点。
本研究中BMSCs干预后Nrf2和HO-1蛋白表达水平明显升高,ROS水平降低,线粒体自噬相关蛋白被抑制,线粒体损伤和超微结构得到明显改善,且大鼠脑组织海马区神经元损伤和病理变化得到明显改善。本研究中Morris水迷宫实验检测结果显示:BMSCs对VaD大鼠空间学习能力具有保护作用。Nrf2抑制剂部分逆转了BMSCs的对VaD模型大鼠的调节效果。提示BMSCs可能通过调节ROS/Nrf2信号通路抑制线粒体自噬减轻海马神经元损伤,进而改善VaD大鼠认知功能。
综上所述, BMSCs通过调控ROS/Nrf2信号通路改善VaD大鼠中的氧化应激状态,抑制线粒体自噬,进而减缓大鼠脑组织海马区神经元的损伤,改善大鼠认知功能。但MSCs对ROS/Nrf2信号通路具体的调控机制尚需进一步研究。