沉默生物节律基因TIMELESS对卵巢癌SK-OV-3细胞免疫逃逸的抑制作用及其机制

顾雨玲 ,  郑翠 ,  汤云仙

吉林大学学报(医学版) ›› 2025, Vol. 51 ›› Issue (03) : 653 -662.

PDF (1062KB)
吉林大学学报(医学版) ›› 2025, Vol. 51 ›› Issue (03) : 653 -662. DOI: 10.13481/j.1671-587X.20250310
基础研究

沉默生物节律基因TIMELESS对卵巢癌SK-OV-3细胞免疫逃逸的抑制作用及其机制

作者信息 +

Inhibitory effect of silencing of circadian rhythm gene TIMELESS on immune escape of ovarian cancer SK-OV-3 cells and its mechanism

Author information +
文章历史 +
PDF (1087K)

摘要

目的 探讨沉默生物节律基因TIMELESSTIM)对卵巢癌细胞免疫逃逸的影响,并阐明其相关作用机制。 方法 分离CD8+T淋巴细胞,并采用流式细胞术进行鉴定,检测细胞中CD3+/CD8+细胞亚群比例。体外培养人卵巢癌SK-OV-3细胞,分别转染TIM小干扰RNA(siRNA)干扰质粒(si-TIM)、阴性对照质粒(si-NC)、程序性死亡配体1(PD-L1)过表达质粒(oe-PD-L1)及其阴性对照质粒(oe-NC),分为空白对照组(BC组,不进行转染)、si-NC组(转染si-NC)、si-TIM组(转染si-TIM)、si-NC+oe-NC组(转染si-NC和oe-NC)和si-TIM+oe-PD-L1(转染si-TIM和oe-PD-L1)组。采用实时荧光定量PCR(RT-qPCR)法和Western blotting法检测SK-OV-3细胞中TIM mRNA及蛋白表达水平,验证TIM基因沉默情况。将转染后的SK-OV-3细胞与激活的CD8+T淋巴细胞共培养,分为BC组(单独培养SK-OV-3细胞)、BC/T组、si-NC/T组、si-TIM/T组、si-NC+oe-NC/T组和si-TIM+oe-PD-L1/T组,采用CCK-8法检测各组SK-OV-3细胞存活率,流式细胞术检测各组SK-OV-3细胞凋亡率和细胞表面PD-L1阳性表达率,酶联免疫吸附试验(ELISA)法检测共培养上清液中干扰素γ(IFN-γ)和肿瘤坏死因子α(TNF-α)水平,乳酸脱氢酶(LDH)释放法检测各组CD8+T淋巴细胞杀伤力,RT-qPCR法检测各组SK-OV-3细胞中TIM和PD-L1 mRNA表达水平,Western blotting法检测各组SK-OV-3细胞中TIM和PD-L1蛋白表达水平。 结果 免疫磁珠法分离后,CD8+T淋巴细胞(CD3+/CD8+)亚群比例为96.56%±0.59%,提示所提取CD8+T淋巴细胞纯度较高。与BC组比较,si-TIM组细胞中TIM mRNA和蛋白表达水平均明显降低(P<0.01),提示本研究成功获得TIM基因沉默的卵巢癌SK-OV-3细胞。CCK-8法,与BC组比较,BC/T组SK-OV-3细胞存活率明显降低(P<0.01);与BC/T组比较,si-TIM/T组SK-OV-3细胞存活率明显降低(P<0.01)。流式细胞术,与BC组比较,BC/T组SK-OV-3细胞凋亡率明显升高(P<0.01);与BC/T组比较,si-TIM/T组SK-OV-3细胞凋亡率明显升高(P<0.01);与si-TIM/T组比较,si-TIM+oe-PD-L1/T组SK-OV-3细胞凋亡率明显降低(P<0.01)。与BC组比较,si-TIM组SK-OV-3细胞表面PD-L1阳性表达率明显降低(P<0.01)。ELISA法,与BC/T组比较,si-TIM/T组细胞培养上清液中IFN-γ和TNF-α水平均明显升高(P<0.01);与si-TIM/T组比较,si-TIM+oe-PD-L1/T组细胞培养上清液中IFN-γ和TNF-α水平均明显降低(P<0.01)。LDH释放法,与BC/T组比较,si-TIM/T组CD8+T淋巴细胞杀伤力明显增强(P<0.01);与si-TIM/T组比较,si-TIM+oe-PD-L1/T组CD8+T淋巴细胞杀伤力明显减弱(P<0.01)。RT-qPCR法和Western blotting法,与BC组比较,si-TIM组SK-OV-3细胞中PD-L1 mRNA和蛋白表达水平均明显降低(P<0.01);与si-TIM组比较,si-TIM+oe-PD-L1组细胞中PD-L1蛋白表达水平明显升高(P<0.01)。 结论 TIM基因沉默可增强CD8+T淋巴细胞对卵巢癌SK-OV-3细胞的杀伤作用,抑制其免疫逃逸,其作用机制可能与调控PD-L1蛋白表达有关。

Abstract

Objective To discuss the effect of circadion rhythm gene TIMELESS (TIM) silencing on immune escape of the ovarian cancer cells, and to clarify its related mechanism. Methods The CD8+T lymphocytes were isolated and identified by flow cytometry to detect the proportion of CD3+/CD8+ cell subsets. The human ovarian cancer SK-OV-3 cells were cultured in vitro and divided into interference plasmid transfected with TIM small interfering (siRNA) (si-TIM), negative control plasmid (si-NC), programmed death ligand 1 (PD-L1) over-expression plasmid (oe-PD-L1), and negative control plasmid (oe-NC) groups. The cells were further divided into blank control group (BC group, non-transfection), si-NC group (transfected with si-NC), si-TIM group(transfected with si-TIM), si-NC+oe-NC group (transfected with si-NC and oe-NC), and si-TIM+oe-PD-L1 group (transfected with si-TIM and oe-PD-L1). Real-time fluorescence quantitative PCR(RT-qPCR) and Western blotting methods were used to detect the expression levels of TIM mRNA and protein in the SK-OV-3 cells to verify TIM gene silencing. The transfected SK-OV-3 cells were co-cultured with activated CD8+T lymphocytes and divided into BC group (SK-OV-3 cells cultured alone), BC/T group, si-NC/T group, si-TIM/T group, si-NC+oe-NC/T group, and si-TIM+oe-PD-L1/T group. CCK-8 method was used to detect the survival rates of the SK-OV-3 cells in various groups; flow cytometry was used to detect the apoptotic rates of the SK-OV-3 cells and positive expression rate of PD-L1 on surface of the cells in various groups; enzyme-linked immunosorbent assay (ELISA) method was used to detect the levels of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the co-culture supernatant; lactate dehydrogenase (LDH) release assay was used to detect the cytotoxicity of the CD8+T lymphocytes in various groups; RT-qPCR method was used to detect the expression levels of TIM and PD-L1 mRNA in the SK-OV-3 cells in various groups; Western blotting method was used to detect the expression levels of TIM and PD-L1 proteins in the SK-OV-3 cells in various groups. Results After scparated with immune magnetic bead method, the proportion of CD8+T lymphocyte (CD3+/CD8+) subsets was (96.56%±0.59%), indicating high purity of the extracted CD8+T lymphocytes. Compared with BC group, the expression levels of TIM mRNA and protein in the cells in si-TIM group were significantly decreased (P<0.01), suggesting successful TIM gene silencing in the ovarian cancer SK-OV-3 cells. The CCK-8 results showed that compared with BC group, the survival rate of the SK-OV-3 cells in BC/T group was significantly decreased (P<0.01); compared with BC/T group, the survival rate of the SK-OV-3 cells in si-TIM/T group was significantly decreased (P<0.01). The flow cytometry results showed that compared with BC group, the apoptotic rate of the SK-OV-3 cells in BC/T group was significantly increased (P<0.01); compared with BC/T group, the apoptotic rate of the SK-OV-3 cells in si-TIM/T group was significantly increased (P<0.01); compared with si-TIM/T group, the apoptotic rate of the SK-OV-3 cells in si-TIM+oe-PD-L1/T group was significantly decreased (P<0.01). Compared with BC group, the positive expression rate of PD-L1 on surface of the SK-OV-3 cells in si-TIM group was significantly decreased (P<0.01). The ELISA results showed that compared with BC/T group, the levels of IFN-γ and TNF-α in the culture supernatant in si-TIM/T group were significantly increased (P<0.01); compared with si-TIM/T group, the levels of IFN-γ and TNF-α in the supernatant in si-TIM+oe-PD-L1/T group were significantly decreased (P<0.01). The LDH release assay results showed that compared with BC/T group, the cytotoxicity of the CD8+T lymphocytes in si-TIM/T group was significantly increased (P<0.01); compared with si-TIM/T group, the cytotoxicity of the CD8+T lymphocytes in si-TIM+oe-PD-L1/T group was significantly weakened (P<0.01). The RT-qPCR and Western blotting results showed that compared with BC group, the expression levels of PD-L1 mRNA and protein in the SK-OV-3 cells in si-TIM group were significantly decreased (P<0.01); compared with si-TIM group, the expression level of PD-L1 protein in the cells in si-TIM+oe-PD-L1 group was significantly increased (P<0.01). Conclusion TIM gene silencing enhances the cytotoxic effect of CD8+T lymphocytes on ovarian cancer SK-OV-3 cells and inhibits immune escape, and its mechanism may be related to the regulation of PD-L1 protein expression.

Graphical abstract

关键词

卵巢癌 / 免疫逃逸 / TIMELESS基因 / CD8+T淋巴细胞 / 程序性死亡配体1

Key words

Ovarian cancer / Immune escape / TIMELESS gene / CD8+T lymphocytes / Programmed death ligand 1

引用本文

引用格式 ▾
顾雨玲,郑翠,汤云仙. 沉默生物节律基因TIMELESS对卵巢癌SK-OV-3细胞免疫逃逸的抑制作用及其机制[J]. 吉林大学学报(医学版), 2025, 51(03): 653-662 DOI:10.13481/j.1671-587X.20250310

登录浏览全文

4963

注册一个新账户 忘记密码

卵巢癌是全球女性妇科癌症相关死亡的主要原因之一,由于疾病早期阶段缺乏特定的症状和体征,约75%的卵巢癌患者发展至晚期才被诊断,其中超过70%的患者对初级治疗无效,且5年复发率较高1。晚期诊断和耐药性是导致卵巢癌高发病率及治疗失败的2个主要因素2。目前,在妇科恶性肿瘤领域存在多种乳腺癌和卵巢癌潜在的治疗靶点,靶向治疗具有很好的应用前景3。肿瘤免疫逃逸是肿瘤发生发展的重要环节,肿瘤细胞可以发展多种免疫抑制机制以对抗肿瘤免疫4。程序性死亡配体1(programmed death-ligand 1,PD-L1)/程序性死亡受体1(programmed death receptor-1,PD-1)信号通路是肿瘤免疫抑制的重要组成部分,可以抑制T淋巴细胞活化,增强肿瘤细胞的免疫耐受性,从而实现肿瘤免疫逃逸5。因此,靶向PD-L1/PD-1信号通路是一种具有较强吸引力的肿瘤治疗策略。生物节律分子TIMELESS(TIM)最初被认为是一种潜在的生物钟蛋白,现已被证实其为DNA复制叉的重要组成之一,可以保护DNA复制叉不在难以复制的区域停滞,并在DNA损伤中发挥重要保护和修复作用6TIM基因还可作为一种癌基因,在多种癌症中呈过度表达,使肿瘤细胞免受DNA损伤和化疗耐药性7。研究8显示:TIM基因缺失可激活结肠癌细胞的上皮-间质转化程序,并与结肠癌患者预后差有关。研究9-10显示:TIM蛋白在人卵巢癌组织中高表达,沉默TIM基因可抑制卵巢癌细胞增殖、迁移和侵袭。研究11显示:TIM蛋白高表达可增强PD-L1的转录水平,从而促进乳腺癌的侵袭性和恶性进展,有助于肿瘤免疫逃逸,而当其表达下调时,会增加CD8+T淋巴细胞的抗肿瘤活性。然而,TIM基因是否通过调节PD-L1影响卵巢癌细胞免疫逃逸尚不明确。因此,本研究探讨TIM基因沉默对卵巢癌细胞免疫逃逸的影响,并阐明其分子机制,以期为卵巢癌治疗策略的研究提供新思路。

1 材料与方法

1.1 细胞、主要试剂和仪器

人卵巢癌细胞系SK-OV-3细胞购自美国模式培养物研究所(American type culture collection,ATCC)。RPMI-1640培养基和人白细胞介素2(interleukin-2,IL-2)重组蛋白购自赛百慷(上海)生物技术股份有限公司,DynabeadsTM Untouched™人CD8+T淋巴细胞试剂盒、Lipofectamine 3000转染试剂、CD8-异硫氰酸荧光素(fluorescein isothiocyanate,FITC)、CD3-藻红蛋白(phycoerythrin,PE)和PD-L1-PE抗体购自美国ThermoFisher Scientific公司,T Cell TransAct购自德国Miltenyi公司,CCK-8试剂盒和AnnexinⅤ/FITC凋亡检测试剂盒购自北京索莱宝科技有限公司,干扰素γ(interferon-γ,INF-γ)和肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)检测试剂盒购自武汉云克隆科技股份有限公司,乳酸脱氢酶(lactate dehydrogenase,LDH)细胞毒性检测试剂盒、TRIzol试剂和RIPA裂解液购自上海碧云天生物技术股份有限公司,逆转录试剂盒和SYBR Green Master Mix购自南京诺唯赞生物科技股份有限公司,兔抗人PD-L1抗体、兔抗人TIM抗体、兔抗人GAPDH抗体和二抗购自英国Abcam公司,TIM小干扰RNA(small interfering RNA,siRNA)干扰质粒(si-TIM)、阴性对照质粒(si-NC)、PD-L1过表达质粒(oe-PD-L1)及其阴性对照质粒(oe-NC)由生工生物工程(上海)股份有限公司提供。流式细胞仪购自美国Beckman公司,酶标仪购自美国Bio Tek公司,实时荧光定量PCR(real-time fluorescence quantitative PCR, RT-qPCR)仪购自瑞士Roche公司,电泳仪和电泳槽购自北京六一生物科技有限公司。

1.2 CD8+T淋巴细胞分离及鉴定

收集健康体检者外周血,梯度离心获得人外周血单核细胞(peripheral blood mononuclear cell,PBMC)。根据Dynabeads™ Untouched™人CD8+T淋巴细胞试剂盒说明书,采用免疫磁珠法分离,即取500 µL(约含5×107个细胞)PBMC,加入100 µL抗体混合物,于4 ℃孵育20 min;加入磷酸盐缓冲液(phosphate buffer saline,PBS)洗涤细胞,离心弃上清液;加入500 µL免疫磁珠,轻轻倾斜和旋转,室温反应15 min;加入2 mL PBS缓冲液,将细胞放置于磁力架上静置2 min,收集上清液。向磁珠中加入2 mL PBS缓冲液,经磁力架吸附后,再次收集上清液,将2次收集的上清液混合,1 200 r·min-1离心5 min,收集细胞沉淀即为CD8+T淋巴细胞。采用流式细胞术对CD8+T淋巴细胞进行鉴定,检测细胞中CD3+/CD8+细胞亚群比例。

1.3 细胞转染、分组和共培养

收集SK-OV-3细胞接种于6孔细胞培养板中,每孔约含2×105个细胞,将SK-OV-3细胞分为空白对照组(BC组)、si-NC 组、 si-TIM 组、 si-NC + oe-NC 组 和si-TIM+oe-PD-L1组,采用Lipofectamine 3000转染试剂分别将si-TIM、si-NC、oe-PD-L1和oe-NC分别转染至除BC组外的相应组SK-OV-3细胞中,BC组不进行转染,转染48 h后收集细胞。采用RT-qPCR法和Western blotting法检测SK-OV-3细胞中TIM mRNA及蛋白表达水平,验证卵巢癌SK-OV-3细胞中TIM基因沉默情况。于CD8+T淋巴细胞培养基中补充20 μg·L-1 IL-2重组蛋白,采用T Cell TransAct试剂刺激CD8+T淋巴细胞活化。取转染后的各组SK-OV-3细胞与活化的CD8+T淋巴细胞按照1∶10的比例于Transwell小室中进行间接共培养,并将其分为BC组(单独培养SK-OV-3细胞)、BC/T组、si-NC/T组、si-TIM/T组、si-NC+oe-NC/T组和si-TIM+oe-PD-L1/T组,共培养时间为24 h。

1.4 CCK-8法检测各组SK-OV-3细胞存活率

于96孔细胞培养板下室中以每孔1×103个细胞的密度接种SK-OV-3细胞,建立上述共培养体系,共培养24 h后,取出CD8+T淋巴细胞,于含有SK-OV-3细胞的孔内加入10 µL CCK-8溶液,继续培养2 h。采用酶标仪于波长450 nm处测定吸光度(A)值,计算各组细胞存活率。细胞存活率=(实验孔A值-空白孔A值)/(对照孔A值-空白孔A值)×100%。

1.5 流式细胞术检测各组SK-OV-3细胞凋亡率

收集共培养体系中的SK-OV-3细胞,1 000 r·min-1离心5 min,弃上清,加入结合缓冲液调整细胞浓度为2×106 mL-1。取100 µL细胞悬液,加入5 µL AnnexinⅤ/FITC和5 µL PI溶液孵育5 min。加入400 µL PBS缓冲液,混匀后于流式细胞仪上检测细胞凋亡率。细胞凋亡率=早期细胞凋亡率+晚期细胞凋亡率。

1.6 流式细胞术检测各组SK-OV-3细胞表面PD-L1阳性表达率

收集共培养体系中的SK-OV-3细胞,1 000 r·min-1离心5 min,弃上清,加入PBS缓冲液重悬细胞沉淀,并调整细胞密度为2×106 mL-1。加入5 µL PD-L1-PE抗体室温避光孵育30 min。PBS缓冲液洗涤细胞,加入400 µL PBS缓冲液重悬后于流式细胞仪上检测PD-L1阳性表达率。

1.7 酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)法检测各组共培养体系细胞培养上清液中IFN-γ和TNF-α水平

收集共培养体系中细胞培养上清液,按照ELISA试剂盒说明书加入标准品、样本和检测液等进行反应,加入底物溶液进行显色,最后加入终止液终止反应。采用酶标仪于波长450 nm处测定A值,根据标准曲线计算共培养体系细胞培养上清液中IFN-γ和TNF-α水平。

1.8 LDH释放法检测各组CD8+T淋巴细胞杀伤力

以SK-OV-3细胞为靶细胞,CD8+T淋巴细胞为效应细胞,将其分为靶细胞自然释放组(100 µL SK-OV-3细胞悬液+100 µL细胞培养液)、效应细胞自然释放组(100 µL CD8+T淋巴细胞悬液+ 100 µL细胞培养液)、自然杀伤组(100 µL CD8+T淋巴细胞悬液+100 µL SK-OV-3细胞悬液,即上述共培养体系)和靶细胞最大释放组(100 µL SK-OV-3细胞悬液+10 µL LDH释放试剂+90 µL细胞培养液)。37 ℃孵育1 h后,离心收集120 µL细胞培养上清液,加入60 µL LDH检测液,室温避光孵育30 min。采用酶标仪于波长490 nm处测定A值,计算CD8+T淋巴细胞杀伤力。CD8+ T淋巴细胞杀伤力=(自然杀伤组A值-靶细胞自然释放组A值-效应细胞自然释放组A值)/(靶细胞最大释放组A值-靶细胞自然释放组A值)×100%。

1.9 RT-qPCR法检测各组SK-OV-3细胞中TIM和PD-L1 mRNA表达水平

收集BC组、si-NC组和si-TIM组SK-OV-3细胞,加入TRIzol试剂进行裂解并提取细胞总RNA。使用逆转录试剂盒获取cDNA,以cDNA为模板,采用SYBR Green Master Mix配置PCR反应体系,反应程序:95 ℃预变性10 min,95 ℃变性15 s、60 ℃退火30 s、72 ℃延伸30 s,共40个循环。引物序列:TIM上游引物5'-GTTTTGGCAATCTGCCTAAGGA-3',TIM下游引物5'-GCAGCTCATACAAGGTTT-CACT-3';PD-L1上游引物5'-TTTGCTGAACG-CCCCATA-3',PD-L1下游引物5'-TGCTTGTC-CAGATGACTTCG-3';GAPDH上游引物5'-AC-AACTTTGGTATCGTGGAAGG-3',GAPDH下游引物5'-GCCATCACGCCACAGTTTC-3'。以GAPDH为内参基因,采用2—△△Ct法计算细胞中TIM和PD-L1 mRNA表达水平。

1.10 Western blotting法检测各组SK-OV-3细胞中TIM和PD-L1蛋白表达水平

收集各组转染后的SK-OV-3细胞,加入RIPA裂解液提取蛋白质。蛋白质浓度定量后,经SDS-PAGE电泳分离,将蛋白转移至PVDF膜上。使用含5%脱脂奶粉封闭液浸泡PVDF膜,室温封闭2 h。加入TIM抗体(1∶10 000)、PD-L1抗体(1∶1 000)和GAPDH抗体(1∶2 500)浸泡PVDF膜,4 ℃孵育过夜。加入二抗室温孵育1 h,最后加入化学发光试剂进行显影曝光。采用Image J软件分析蛋白条带灰度值,以GAPDH为内参,计算目的蛋白表达水平。目的蛋白表达水平=目的蛋白条带灰度值/内参蛋白条带灰度值。

1.11 统计学分析

采用SPSS 23.0统计软件进行统计学分析。各组SK-OV-3细胞存活率和细胞凋亡率,细胞表面PD-L1阳性表达率,共培养体系细胞培养上清液中IFN-γ和TNF-α水平及CD8+T淋巴细胞杀伤力,细胞中TIM和PD-L1mRNA及蛋白表达水平,均符合正态分布,以x±s表示,多组间样本均数比较采用单因素方差分析,组间样本均数两两比较采用LSD-t检验。以P<0.05为差异有统计学意义。

2 结 果

2.1 人外周血CD8+T淋巴细胞鉴定

免疫磁珠法分离前,人外周血中CD8+T淋巴细胞(CD3+/CD8+)亚群比例为24.43%±2.76%;免疫磁珠法分离后,CD8+T淋巴细胞(CD3+/CD8+)亚群比例为96.56%±0.59%,提示所提取CD8+T淋巴细胞的纯度较高。见图1

2.2 各组SK-OV-3细胞中TIM mRNA和蛋白表达水平

与BC组(1.00±0.08)比较,si-NC组细胞中TIM mRNA(0.97±0.05)和蛋白表达水平差异均无统计学意义(P>0.05),si-TIM组细胞中TIM mRNA(0.26±0.08)和蛋白表达水平均明显降低(P<0.01),提示本研究成功获得TIM基因沉默的卵巢癌SK-OV-3细胞。见图2

2.3 各组SK-OV-3细胞存活率

与BC组(100.00%±10.44%)比较,BC/T组SK-OV-3细胞存活率(79.69%±3.23%)明显降低 (P<0.01);与BC/T组比较,si-NC/T组SK-OV-3细胞存活率(80.17%±5.47%)差异无统计学意义(P>0.05),si-TIM/T组SK-OV-3细胞存活率(47.94%±3.94%)明显降低(P<0.01)。

与BC/T组(100.00%±5.46%)比较,si-NC+oe-NC/T组SK-OV-3细胞存活率(98.38%± 2.92%)差异无统计学意义(P>0.05),si-TIM/T组SK-OV-3细胞存活率(61.13%±4.44%)明显降低(P<0.01);与si-TIM/T组比较,si-TIM+oe-PD-L1/T组SK-OV-3细胞存活率(87.52%± 4.16%)明显升高(P<0.01)。

2.4 各组SK-OV-3细胞凋亡率

与BC组(4.41%±0.57%)比较,BC/T组SK-OV-3细胞凋亡率(15.29%±1.03%)明显升高(P<0.01);与BC/T组比较,si-NC/T组SK-OV-3细胞凋亡率(15.77%±0.94%)差异无统计学意义(P>0.05),si-TIM/T组SK-OV-3细胞凋亡率(24.71%±1.51%) 明显升高(P<0.01)。见图3

与BC/T组(15.47%±0.84%)比较, si-NC+ oe-NC/T组SK-OV-3细胞凋亡率(14.93%± 1.04%)差异无统计学意义(P>0.05),si-TIM/T组SK-OV-3细胞凋亡率(25.73%±1.41%)明显升高(P<0.01);与si-TIM/T组比较,si-TIM+ oe-PD-L1/T组SK-OV-3细胞凋亡率(17.43%± 0.92%)明显降低(P<0.01)。见图4

2.5 各组SK-OV-3细胞表面PD-L1蛋白阳性表达率

与BC组(44.10%±1.79%)比较,si-NC组SK-OV-3细胞表面PD-L1蛋白阳性表达率(43.08%±2.15%)差异无统计学意义(P>0.05),si-TIM组SK-OV-3细胞表面PD-L1蛋白阳性表达率(21.16%±2.45%)明显降低(P<0.01)。见图5

2.6 各组共培养体系细胞上清液中IFN-γ和TNF-α水平

与BC/T组比较,si-NC/T组细胞培养上清液中IFN-γ和TNF-α水平差异无统计学意义(P>0.05),si-TIM/T组细胞上清液中IFN-γ和TNF-α水平明显升高(P<0.01)。见表1

与BC/T组比较,si-NC+oe-NC/T组细胞培养上清液中IFN-γ和TNF-α水平差异无统计学意义(P>0.05),si-TIM/T组细胞培养上清液中IFN-γ和TNF-α水平明显升高(P<0.01)。与si-TIM/T组比较,si-TIM+oe-PD-L1/T组细胞培养上清液中IFN-γ和TNF-α水平明显降低(P<0.01)。见表2

2.7 各组CD8+T淋巴细胞杀伤力

与BC/T组(13.97%±1.19%)比较,si-NC/T组CD8+T淋巴细胞杀伤力(14.19%±2.34%)差异无统计学意义(P>0.05),si-TIM/T组CD8+T淋巴细胞杀伤力 (22.67%±1.49%) 明显增强 (P<0.01)。

与 BC/T 组 (14.27% ± 1.94%) 比 较,si-NC+oe-NC/T组CD8+T淋巴细胞杀伤力(14.14%±0.87%)差异无统计学意义(P>0.05),si-TIM/T组CD8+T淋巴细胞杀伤力(23.72% ± 1.00%) 明 显 增 强(P<0.01);与 si-TIM/T 组 比 较, si-TIM+oe-PD-L1/T 组CD8+T淋巴细胞杀伤力(18.32%±1.37%)明显减弱(P<0.01)。

2.8 各组SK-OV-3细胞中PD-L1 mRNA和蛋白表达水平

与BC组(1.01±0.13)比较,si-NC组SK-OV-3细胞中PD-L1 mRNA(1.04±0.08)和蛋白表达水平差异均无统计学意义(P>0.05),si-TIM组SK-OV-3细胞中PD-L1 mRNA(0.56±0.09)和蛋白表达水平均明显降低(P<0.01)。见图6

与BC组比较,si-NC+oe-NC组SK-OV-3细胞中PD-L1蛋白表达水平差异无统计学意义(P>

0.05),si-TIM组细胞中PD-L1蛋白表达水平明显降低(P<0.01);与si-TIM组比较,si-TIM+ oe-PD-L1组细胞中PD-L1蛋白表达水平明显升高(P<0.01)。见图7

3 讨 论

肿瘤免疫逃逸已成为肿瘤治疗的最大障碍之一,深入了解肿瘤免疫逃逸机制是进一步完善临床治疗策略的关键12。T淋巴细胞是适应性免疫系统的基础,然而由幼稚T淋巴细胞分化为功能性效应CD8+T淋巴细胞需要通过主要组织相容性复合物分子、共刺激和细胞因子呈递的抗原结合T淋巴细胞受体信号才能有效启动。研究13显示:在细胞因子刺激后,T淋巴细胞与肿瘤细胞的相互作用更强。IL-2等细胞因子可增强T淋巴细胞肿瘤免疫能力14。CD8+T淋巴细胞是肿瘤免疫的最终效应物,大部分形式的有效肿瘤免疫疗法均涉及CD8+T淋巴细胞的效应功能14-15。研究16-18显示:促进CD8+T淋巴细胞对癌细胞的杀伤作用有助于抑制肿瘤免疫逃逸。本研究结果显示:SK-OV-3细胞存活率降低,细胞凋亡率升高,提示活化的CD8+T淋巴细胞具有明显的抗肿瘤作用。若进一步增强CD8+T淋巴细胞的杀伤作用,将可能发挥更强大的肿瘤免疫功能。

昼夜节律是影响真核生物和原核生物生理的一个基本生物学过程,昼夜节律紊乱可能增加患肿瘤风险,并影响癌症患者对治疗的反应19。生物节律基因表达失调在恶性肿瘤的发生发展中起重要作用20TIM基因因其参与生物节律和细胞周期而被广泛研究,该基因与多种恶性肿瘤的发展及预后存在关联,可能是泛癌患者的前瞻性预后和免疫生物标志物21。研究22显示:TIM基因在宫颈癌中高表达,调节细胞增殖和顺铂敏感性,敲除TIM基因可诱导细胞凋亡和细胞衰老。但关于TIM基因表达与肿瘤免疫逃逸之间关系的研究较少。DONG等11研究发现:癌细胞中的TIM基因可通过抑制CD8+T淋巴细胞浸润和免疫活性参与免疫抑制。肿瘤微环境中的CD8+T淋巴细胞被激活后分泌IL-2、IFN-γ和TNF-α等细胞因子,并在肿瘤微环境中传播,参与肿瘤免疫反应23。本研究结果显示:SK-OV-3细胞中TIM基因沉默后,与之共培养的CD8+T淋巴细胞分泌的IFN-γ和TNF-α水平升高,且CD8+T淋巴细胞对SK-OV-3细胞杀伤力也明显增强。TIM基因沉默后进一步抑制SK-OV-3细胞增殖,促进细胞凋亡,提示沉默TIM基因可抑制卵巢癌细胞免疫逃逸,但具体机制还需进一步明确。

PD-L1是一个被广泛研究的免疫检查点,通过抑制CD8+T淋巴细胞的免疫活性,在促进恶性肿瘤的免疫逃逸中发挥重要作用24-25。PD-1主要由CD4+和CD8+T淋巴细胞表达,其配体PD-L1广泛表达于各种细胞,包括肿瘤细胞。阻断PD-L1/PD-1信号通路可能有助于恢复T淋巴细胞介导的抗肿瘤免疫,因此,PD-L1/PD-1可能是卵巢癌的重要治疗靶点26。然而,目前针对PD-L1/PD-1信号通路的抗体并未表现出较好的临床疗效,其有效率仅为10%~15%27。与单一治疗比较,免疫检查点抑制剂与小分子抑制剂的联合治疗显示出更好的疗效28。研究29显示:沉默卵巢癌细胞中PD-L1基因的表达后,肿瘤细胞的增殖、迁移和侵袭能力明显减弱。而高表达TIM基因会增强肿瘤细胞中PD-L1基因表达水平11。本研究结果显示:沉默TIM基因后卵巢癌SK-OV-3细胞中PD-L1基因表达下调,SK-OV-3细胞中PD-L1基因过表达会部分抑制TIM基因沉默对CD8+T淋巴细胞杀伤力及细胞因子分泌的促进作用,同时也逆转了TIM基因沉默对SK-OV-3细胞增殖和凋亡的影响,提示TIM基因沉默可能通过下调PD-L1基因表达抑制SK-OV-3细胞免疫逃逸。

综上所述,TIM基因沉默可通过调节PD-L1基因表达抑制卵巢癌细胞免疫逃逸,从而抑制细胞增殖,并诱导细胞凋亡。

参考文献

[1]

SONG JSOKOLL L JZHANG Z, et al. VCAM-1 complements CA-125 in detecting recurrent ovarian cancer[J]. Clin Proteomics202320(1): 25.

[2]

LAMPROPOULOU D IPAPADIMITRIOU MPAPADIMITRIOU C, et al. The role of EMT-related lncRNAs in ovarian cancer[J]. Int J Mol Sci202324(12): 10079.

[3]

PREETAM SMONDAL SPRIYA S, et al. Targeting tumour markers in ovarian cancer treatment[J]. Clin Chim Acta2024559: 119687.

[4]

YIN S SGAO F H. Molecular mechanism of tumor cell immune escape mediated by CD24/siglec-10[J]. Front Immunol202011: 1324.

[5]

JIANG X JWANG JDENG X Y, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer201918(1): 10.

[6]

CAI Y DCHIU J C. Timeless in animal circadian clocks and beyond[J]. FEBS J2022289(21): 6559-6575.

[7]

VIPAT SMOISEEVA T N. The TIMELESS roles in genome stability and beyond[J]. J Mol Biol2024436(1): 168206.

[8]

COLANGELO TCARBONE AMAZZARELLI F, et al. Loss of circadian gene Timeless induces EMT and tumor progression in colorectal cancer via Zeb1-dependent mechanism[J]. Cell Death Differ202229(8): 1552-1568.

[9]

XING XGU FHUA L Y, et al. TIMELESS promotes tumor progression by enhancing macrophages recruitment in ovarian cancer[J]. Front Oncol202111: 732058.

[10]

粟连秀, 陈静平, 杨达平, 沉默生物钟基因Timeless对卵巢癌SKOV3细胞凋亡和侵袭能力的影响[J]. 中国病理生理杂志201935(7): 1169-1175.

[11]

DONG X RDAI H JLIN Y P, et al. TIMELESS upregulates PD-L1 expression and exerts an immunosuppressive role in breast cancer[J]. J Transl Med202321(1): 400.

[12]

AKTAR NCHEN Y TABBAS M, et al. Understanding of immune escape mechanisms and advances in cancer immunotherapy[J]. J Oncol20222022: 8901326.

[13]

SAVID-FRONTERA CVIANO M EBAEZ N S, et al. Exploring the immunomodulatory role of virtual memory CD8+T cells: Role of IFN gamma in tumor growth control[J]. Front Immunol202213: 971001.

[14]

GILES J RGLOBIG A MKAECH S M, et al. CD8+T cells in the cancer-immunity cycle[J]. Immunity202356(10): 2231-2253.

[15]

QIN Y YBAO X YZHENG M Z. CD8+T-cell immunity orchestrated by iNKT cells[J]. Front Immunol202313: 1109347.

[16]

WANG X MZHANG YZHENG J, et al. LncRNA UCA1 attenuated the killing effect of cytotoxic CD8+T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway[J]. Cancer Immunol Immunother202170(8): 2235-2245.

[17]

杨 婷, 郑锦秀, 高书华, 钙连蛋白(CNX)通过促进MHCⅠ表达增强CD8+T细胞对结直肠癌细胞的杀伤作用[J]. 细胞与分子免疫学杂志202238(2): 97-102.

[18]

QIN RZHAO CWANG C J, et al. Tryptophan potentiates CD8+T cells against cancer cells by TRIP12 tryptophanylation and surface PD-1 downregulation[J]. J Immunother Cancer20219(7): e002840.

[19]

CHANG W HLAI A G. Timing gone awry: distinct tumour suppressive and oncogenic roles of the circadian clock and crosstalk with hypoxia signalling in diverse malignancies[J]. J Transl Med201917(1): 132.

[20]

GAO Y YWU Y WZHANG N M, et al. IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87-MG cells[J]. Mol Med Rep202123(5): 354.

[21]

YANG Y CTANG X ZLIN Z J, et al. An integrative evaluation of circadian gene TIMELESS as a pan-cancer immunological and predictive biomarker[J]. Eur J Med Res202328(1): 563.

[22]

ZHOU J HZHANG Y HZOU X W, et al. Aberrantly expressed timeless regulates cell proliferation and cisplatin efficacy in cervical cancer[J]. Hum Gene Ther202031(5/6): 385-395.

[23]

HOEKSTRA M EVIJVER S VSCHUMACHER T N. Modulation of the tumor micro-environment by CD8+ T cell-derived cytokines[J]. Curr Opin Immunol202169: 65-71.

[24]

ZHU DXU R DHUANG X P, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1[J]. Cell Death Differ202128(6): 1773-1789.

[25]

CHA J HYANG W HXIA W Y, et al. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1[J]. Mol Cell201871(4): 606-620.e7.

[26]

DUMITRU ADOBRICA E CCROITORU A, et al. Focus on PD-1/PD-L1 as a therapeutic target in ovarian cancer[J]. Int J Mol Sci202223(20): 12067.

[27]

CHARDIN LLEARY A. Immunotherapy in ovarian cancer: thinking beyond PD-1/PD-L1[J]. Front Oncol202111: 795547.

[28]

KHATOON EPARAMA DKUMAR A, et al. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy[J]. Life Sci2022306: 120827.

[29]

CHEN J XYI X JGAO S X, et al. The possible regulatory effect of the PD-1/PD-L1 signaling pathway on Tregs in ovarian cancer[J]. Gen Physiol Biophys202039(4): 319-330.

基金资助

江苏省卫健委省妇幼保健科研项目(F202207)

AI Summary AI Mindmap
PDF (1062KB)

217

访问

0

被引

详细

导航
相关文章

AI思维导图

/