十字形PEC短柱偏压性能及承载力计算方法研究
Study on Eccentric Compression Performance and Bearing Capacity Calculation Method of Cross-Shaped PEC Stub Columns
本文采用有限元模拟和理论分析相结合的方法,研究了十字形PEC短柱的偏压力学性能并推导出其偏压承载力计算公式。首先利用ABAQUS有限元软件进行数值建模,分别考察在大偏压和小偏压作用下试件的破坏模式和破坏机理,并通过参数分析,研究混凝土强度、钢材强度、加载角和肢厚比等参数对试件力学性能的影响规律。研究结果表明:在大偏压和小偏压破坏时,主钢件均非全截面屈服,而是在中性轴附近存在弹性核;在小偏心受压时,提高混凝土强度等级可明显增加试件的极限承载力,而在大偏心受压时,提高混凝土强度等级对极限承载力的影响会随着偏心距的增大而减小;提高钢材强度等级无论在大、小偏压情况下均可有效提高十字形PEC柱的极限承载力。另外,本文还分别推导了十字形PEC柱在单偏压和双偏压作用下的荷载-弯矩曲线简化计算公式,经验证公式具有较好的准确性,可为工程应用提供参考。
This study utilizes a combination of theoretical analysis and finite element simulation to investigate the eccentric mechanical characteristics of the cross-shaped partially-encased composite (PEC) stub column, deriving a calculation formula for the eccentric bearing capacity. First, numerical modeling was performed using the ABAQUS finite element software to analyze the failure mode and mechanism of the specimen under large and small eccentricities. Parameter analysis was then conducted to explore the influence of parameters such as concrete strength, steel strength, loading angle, and limb-thickness ratio on the mechanical characteristics of the specimen. The results reveal that under eccentric compression, the profile steel does not yield in full section, but an elastic core is observed near the neutral axis. Increasing concrete strength significantly enhances the ultimate bearing capacity of specimens subjected to small eccentric compression. However, the effect diminishes with larger eccentric distances under large eccentric compression. Augmenting steel strength proves to be more effective in improving the bending capacity of the cross-shaped PEC column under both small and large eccentricities. Additionally, simplified calculation formulas for the N-M curves of cross-shaped PEC columns under uniaxial and biaxial eccentric compression were derived. Verification confirms the formulas have good accuracy and can provide a reference for engineering applications.
十字形PEC短柱 / 单向偏压 / 双向偏压 / 极限承载力 / 荷载-弯矩曲线
cross-shaped PEC stub column / uniaxial eccentric compression / biaxial eccentric compression / ultimate bearing capacity / load-moment curve
| [1] |
中国工程建设标准化协会标准. 部分包覆钢-混凝土组合结构技术规程:T/CECS 719—2020[S]. 北京:中国建筑工业出版社,2020. |
| [2] |
China Association for Engineering Construction Standardization. Technical Specification for Partially-encased Composite Structures of Steel and Concrete:T/CECS 719—2020[S]. Beijing:China Architecture & Building Press,2020. (in Chinese) |
| [3] |
陈以一,林俊星,李杰. 部分包覆钢-混凝土组合构件中主钢件翼缘的局部稳定性能研究[J]. 建筑结构,2021,51(7):1-6. DOI:10.19701/j.jzjg.2021.07.001. |
| [4] |
CHEN Yiyi,LIN Junxing,LI Jie. Research on local stability performance of main steel flange in partially-encased composite steel and concrete members[J]. Building Structure,2021,51(7):1-6. DOI:10.19701/j.jzjg.2021.07.001.(in Chinese) |
| [5] |
林德慧,陈以一,李杰. 部分包覆钢-混凝土组合柱轴压整体稳定承载力的工程计算[J]. 建筑结构,2021,51(7):22-29. DOI:10.19701/j.jzjg.2021.07.004. |
| [6] |
LIN Dehui,CHEN Yiyi,LI Jie. Engineering calculation of overall stability bearing capacity of partially-encased composite steel and concrete columns under axial compression[J]. Building Structure,2021,51(7):22-29. DOI:10.19701/j.jzjg.2021.07.004.(in Chinese) |
| [7] |
CHEN Y Y,WANG T,YANG J,et al. Test and numerical simulation of partially encased composite columns subject to axial and cyclic horizontal loads[J]. International Journal of Steel Structures,2010,10(4):385-393. DOI:10.1007/BF03215846. |
| [8] |
郝志强. H型钢部分包裹混凝土组合短柱偏心受力性能研究[D]. 包头:内蒙古科技大学,2008. |
| [9] |
HAO Zhiqiang. Experimental study on the behavior of partially encased composite short columns made with welded H-section steel under eccentrically load[D]. Baotou:Inner Mongolia University of Science & Technology,2008. (in Chinese) |
| [10] |
武志勇. 焊接H型钢部分包裹混凝土组合短柱偏心受力性能研究[D]. 包头:内蒙古科技大学,2009. |
| [11] |
WU Zhiyong. Experimental study on the behavior of partially encased composite short columns made with welded H-section steel under eccentrically load[D]. Baotou:Inner Mongolia University of Science & Technology,2009. (in Chinese) |
| [12] |
BEGUM M,DRIVER R G,ELWI A E. Behaviour of partially encased composite columns with high strength concrete[J]. Engineering Structures,2013,56:1718-1727. DOI:10.1016/j.engstruct.2013.07.040. |
| [13] |
BEGUM M,DRIVER R G,ELWI A E. Finite-element modeling of partially encased composite columns using the dynamic explicit method[J]. Journal of Structural Engineering,2007,133(3):326-334. DOI:10.1061/(asce)0733-9445(2007)133:3(326). |
| [14] |
CHICOINE T,MASSICOTTE B,TREMBLAY R. Long-term behavior and strength of partially encased composite columns made with built-up steel shapes[J]. Journal of Structural Engineering,2003,129(2):141-150. DOI:10.1061/(asce)0733-9445(2003)129:2(141). |
| [15] |
陈璨. 薄壁钢板组合PEC异形柱受压性能研究[D]. 大连:大连理工大学,2019. |
| [16] |
CHEN Can. The compressive behavior of PEC specially shaped columns with thin-walled steel plate[D]. Dalian:Dalian University of Technology,2019.(in Chinese) |
| [17] |
赵吉航. 十字形PEC短柱受压性能试验与计算方法研究[D]. 合肥:合肥工业大学,2022. |
| [18] |
ZHAO Jihang. Research on compression performance test and design method of cross-shaped PEC short columns[D]. Hefei:Hefei University of Technology,2022. (in Chinese) |
| [19] |
European Committee for Standardization. Design of Composite Steel and Concrete Structures:Eurocode 4[S],Brussels:European Committee for Standardization,2004. |
| [20] |
EBADI-JAMKHANEH M,KAFI M A,KHEYRODDIN A. Behavior of partially encased composite members under various load conditions:Experimental and analytical models[J]. Advances in Structural Engineering,2019,22(1):94-111. DOI:10.1177/1369433218778725. |
| [21] |
LIU X,LI Y P. Mechanical behavior of cross-shaped partially encased composite columns under axial compression[J]. Journal of Building Technology,2022,4(1):1-13. DOI:10.32629/jbt.v4i1.657. |
| [22] |
MANDER J B,PRIESTLEY M J N,PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. DOI:10.1061/(asce)0733-9445(1988)114:8(1804). |
| [23] |
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2011. |
| [24] |
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Code for Design of Concrete Structures:GB 50010—2010[S]. Beijing:China Architecture & Building Press,2011. (in Chinese) |
| [25] |
BALTAY P,GJELSVIK A. Coefficient of friction for steel on concrete at high normal stress[J]. Journal of Materials in Civil Engineering,1990,2(1):46-49. DOI:10.1061/(asce)0899-1561(1990)2:1(46). |
| [26] |
李媛萍,刘谋雷. T形PEC柱抗震性能的数值模拟分析[J]. 建筑钢结构进展,2024,26(4):77-87. DOI:10.13969/j.cnki.cn31-1893.2024.04.009. |
| [27] |
LI Yuanping,LIU Moulei. Numerical simulation analysis on seismic performance of T-shaped partially encased composite columns[J]. Progress in Steel Building Structures,2024,26(4):77-87. DOI:10.13969/j.cnki.cn31-1893.2024.04.009.(in Chinese) |
/
| 〈 |
|
〉 |