基于多尺度数值分析方法的连续钢桁梁桥受力性能分析
Analysis of the Mechanical Performance of Continuous Steel Truss Bridges Using a Multi-Scale Numerical Analysis Method
为研究大跨度连续钢桁梁桥施工阶段的受力情况,对连续钢桁梁桥的竖向变形和关键节点应力进行了现场实测。依据变形协调原理,建立了节点实体与杆系相结合的多尺度数值分析模型,得到了桥梁成桥阶段的结构整体内力和局部节点受力情况,将桁杆变形和应力的实测值与有限元计算值进行了对比分析。结果表明,下弦杆竖向最大变形值小于6 cm,变形值与计算跨径之比小于1/2 300;杆件实测应力最大值为32 MPa,位于E8节点下弦杆附近。最大变形值和应力值均满足设计规定要求。下弦杆竖向变形实测值与计算值变化趋势基本一致,两者差值小于10 mm,误差平均值和相对误差平均值分别为1.27 mm和6.8%;杆件应力实测值与计算值的误差平均值和相对误差平均值分别为4.5 MPa和11.2%,从而验证了建立的有限元分析模型的有效性。多尺度分析模型与杆系模型计算的竖向变形与实测变形值一致性较好,最大位移误差小于5%、应力误差小于6%。无论是多尺度模型还是杆系模型,节点应力计算值的平均值和跨中竖向变形计算值的平均值与实测值均具有一定的偏差,相对误差均小于20%。因而,多尺度模型能够很好地反映节点局部受力情况。
To thoroughly investigate the stress states during the construction stage of a long-span continuous steel truss bridge, field measurements were conducted to assess the vertical deformations and stresses at critical joints. Based on the principle of deformation coordination, a multi-scale numerical analysis model was developed, integrating joint entities and member systems, to capture the overall internal forces and local joint stress states of the bridge during its service stage. A comparative analysis was then performed, comparing the measured values of truss member deformations and stresses with the calculated values obtained from finite element analysis. The results indicate that the maximum vertical deformation of the bottom chord remains below 6 cm, representing a ratio less than 1/2300 to the calculated span. Additionally, the maximum measured stress in the member, located near the bottom chord of joint E8, is 32 MPa. Both the maximum deformation and stress values satisfy the design specifications. The measured and calculated values of the vertical deformation of the bottom chord exhibit a general consistency, with a discrepancy of less than 10mm. Specifically, the average error and average relative error are 1.27 mm and 6.8% respectively. Similarly, the average error and average relative error between the measured and calculated stress values of the members are 4.5 MPa and 11.2%, respectively, validating the effectiveness of the established finite element analysis model. When comparing the vertical deformations calculated by the multi-scale analysis model and the bar system model with the measured values, a good agreement is observed, with a maximum displacement error of less than 5% and a stress error of less than 6%. Both the multi-scale model and the bar system model exhibit a certain deviation in the average calculated values of joint stress and mid-span vertical deformation from the measured values, but these deviations remain within a relative error of less than 20%. However, the multi-scale model is particularly adept at accurately reflecting the local stress states at the joints.
连续钢桁梁桥 / 成桥阶段 / 多尺度模型 / 实桥测试 / 受力特点 / 有限元分析
continuous steel truss bridge / service stage / multi-scale numerical analysis model / real bridge test / stress characteristics / finite element analysis
| [1] |
周绪红,刘永健. 钢桥[M]. 北京:人民交通出版社,2020. |
| [2] |
ZHOU Xuhong,LIU Yongjian. Steel bridges[M]. Beijing:China Communications Press,2020. (in Chinese) |
| [3] |
PODKORITOVS A,SERDJUKS D,GOREMIKINS V,et al. Behaviour of a space inverted triangular steel truss[J]. The Baltic Journal of Road and Bridge Engineering,2020,15(4):54-70. DOI:10.7250/bjrbe.2020-15.494. |
| [4] |
冯畅. 郑济黄河特大桥连续钢桁梁施工技术研究[D]. 石家庄:石家庄铁道大学,2022. |
| [5] |
FENG Chang. Research on construction technology of continuous steel truss girder for Zhengji yellow river bridge[D]. Shijiazhuang:Shijiazhuang Tiedao University,2022. (in Chinese) |
| [6] |
严永阳. 悬臂施工中连续钢桁梁桥结构性能分析与控制技术研究[D]. 南京:东南大学,2018. |
| [7] |
YAN Yongyang. Structural performance analysis and control technology of continuous steel truss bridge during cantilever construction[D]. Nanjing:Southeast University,2018. (in Chinese) |
| [8] |
田亮,赵健,李向海. 三门峡黄河公铁两用桥钢桁梁悬臂顶推受力分析[J]. 铁道建筑,2020,60(11):40-43. |
| [9] |
TIAN Liang,ZHAO Jian,LI Xianghai. Stress analysis of cantilever incremental launching for steel truss girder of Sanmenxia Yellow River rail-cum-road bridge[J]. Railway Engineering,2020,60(11):40-43. (in Chinese) |
| [10] |
赵汗青,任为东,高静青, 长联大跨连续钢桁梁悬臂拼装全过程仿真研究[J]. 铁道标准设计,2021,65(11):6-11. DOI:10.13238/j.issn.1004-2954.202104260006. |
| [11] |
ZHAO Hanqing,REN Weidong,GAO Jingqing,et al. Simulation research on the whole process of cantilever erection of long-connected large-span continuous steel truss girders[J]. Railway Standard Design,2021,65(11):6-11. DOI:10.13238/j.issn.1004-2954.202104260006.(in Chinese) |
| [12] |
BABUŠKA I,CALOZ G,OSBORN J E. Special finite element methods for a class of second order elliptic problems with rough coefficients[J]. SIAM Journal on Numerical Analysis,1994,31(4):945-981. DOI:10.1137/0731051. |
| [13] |
陆新征,林旭川,叶列平. 多尺度有限元建模方法及其应用[J]. 华中科技大学学报(城市科学版),2008,25(4):76-80. |
| [14] |
LU Xinzheng,LIN Xuchuan,YE Lieping. Multiscale finite element modeling and its application in structural analysis[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition),2008,25(4):76-80. (in Chinese) |
| [15] |
汪楚清,王虎长,李亮, 大跨越输电钢管塔结构多尺度有限元分析[J]. 工程力学,2013,30(7):147-152,166. DOI:10.6052/j.issn.1000-4750.2012.03.0189. |
| [16] |
WANG Chuqing,WANG Huchang,LI Liang,et al. Multi-scale finite element analysis of steel tube tower for large crossing transmission lines[J]. Engineering Mechanics,2013,30(7):147-152,166. DOI:10.6052/j.issn.1000-4750. 2012.03.0189.(in Chinese) |
| [17] |
周萌,宁晓旭,聂建国. 系杆拱桥拱脚连接结构受力性能分析的多尺度有限元建模方法[J]. 工程力学,2015,32(11):150-159. DOI:10.6052/j.issn.1000-4750.2013.11.1023. |
| [18] |
ZHOU Meng,NING Xiaoxu,NIE Jianguo. Multi-scale fea modeling method for mechanical behavior analysis of arch feet on tied arch bridges[J]. Engineering Mechanics,2015,32(11):150-159. DOI:10.6052/j.issn.1000-4750.2013. 11.1023.(in Chinese) |
| [19] |
李兆峰,牛忠荣,方继, 大型连续钢桁梁桥顶推施工中关键节点力学分析研究[J]. 铁道学报,2021,43(4):158-165. DOI:10.3969/j.issn.1001-8360.2021.04.020. |
| [20] |
LI Zhaofeng,NIU Zhongrong,FANG Ji,et al. Mechanical analysis of key joints of super-spanned steel truss girder in incremental launching construction[J]. Journal of the China Railway Society,2021,43(4):158-165. DOI:10.3969/j.issn.1001-8360.2021.04.020.(in Chinese) |
| [21] |
杨欣,张举兵,李小龙, 基于监测数据的钢桁梁桥温度变形研究[J]. 工程力学,2024,41(增刊1):310-316. DOI:10.6052/j.issn.1000-4750.2023.05.S010. |
| [22] |
YANG Xin,ZHANG Jubing,LI Xiaolong,et al. Thermal deformation of a steel truss bridge based on monitoring data[J]. Engineering Mechanics,2024,41(Suppl.1):310-316. DOI:10.6052/j.issn.1000-4750.2023.05.S010.(in Chinese) |
| [23] |
宋洪雨,苏春杰,蔡保硕, 混凝土桁架拱桥荷载试验与承载力评价[J]. 特种结构,2024,41(2):51-57,64. DOI:10.19786/j.tzjg.2024.02.010. |
| [24] |
SONG Hongyu,SU Chunjie,CAI Baoshuo,et al. Load test and bearing capacity evaluation of truss arch bridges[J]. Special Structures,2024,41(2):51-57,64. DOI:10.19786/j.tzjg.2024.02.010.(in Chinese) |
| [25] |
娄松,吴芳,江湧, 大吨位钢桁梁步履式顶推滑移施工力学行为分析[J]. 桥梁建设,2021,51(1):66-73. DOI:10.3969/j.issn.1003-4722.2021.01.010. |
| [26] |
LOU Song,WU Fang,JIANG Yong,et al. Mechanical analysis of walking-type incremental launching and sliding construction of large-tonnage steel truss girder[J]. Bridge Construction,2021,51(1):66-73. DOI:10.3969/j.issn.1003-4722.2021.01.010.(in Chinese) |
| [27] |
崔健. 钢桁架桥节点的优化设计及其有限元分析[D]. 沈阳:沈阳建筑大学,2021. |
| [28] |
CUI Jian. Optimal design and finite element analysis of steel truss bridge joints[D]. Shenyang:Shenyang Jianzhu University,2021. (in Chinese) |
| [29] |
何东升,郑清刚,徐伟. 板桁组合结构主桁节点板应力集中系数研究[J]. 桥梁建设,2020,50(3):46-51. |
| [30] |
HE Dongsheng,ZHENG Qinggang,XU Wei. Study of stress concentration factor for main truss gusset plates in plate-truss composite structure[J]. Bridge Construction,2020,50(3):46-51. (in Chinese) |
| [31] |
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 钢结构设计标准:GB 50017—2017[S]. 北京:中国建筑工业出版社,2017. |
| [32] |
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Standard for Design of Steel Structures:GB 50017—2017[S]. Beijing:China Architecture & Building Press,2017.(in Chinese) |
国家自然科学基金(51878156)
中铁二十局集团科技研发项目(YF2201QL01B)
/
| 〈 |
|
〉 |