装配式槽钢腹板开孔耗能支撑滞回性能试验研究
Experimental Study on Hysteretic Performance of Assembled Energy Dissipation Brace with Perforated Channel Steel
装配式槽钢腹板开孔耗能支撑由中心支撑斜杆两端设置的腹板开孔槽钢构成,开孔槽钢与H型钢支撑之间采用螺栓连接,可避免中心支撑斜杆受压失稳。为研究该支撑的滞回性能,设计了3根开孔形式不同的装配式槽钢腹板开孔耗能支撑试件,对试件开展了低周往复加载试验,并进行了有限元模拟分析。研究结果表明:在轴力作用下,装配式槽钢开孔耗能支撑主要依靠端部槽钢开孔腹板的孔间板件屈服耗能,整个加载过程中支撑主体H型钢未发生失稳;加载过程中螺栓出现了滑移,滞回曲线有不同程度的捏拢;试验中腹板开椭圆孔的试件耗能能力最强,腹板开菱形孔的试件承载能力最强;减小开孔槽钢腹板孔间板件高宽比可以显著提高试件的承载能力和加载后期的耗能能力;减小开孔槽钢腹板孔间板件高厚比对试件的耗能能力影响不明显;在保证开孔率相同的前提下,槽钢腹板开椭圆孔耗能支撑的承载能力较开长圆孔和菱形孔支撑的承载能力更强。
A novel type of energy dissipation brace is composed of channel steel with holes on the webs installed at both ends of the central brace. The perforated channel steel and the H-shaped steel brace are bolted to avoid the pressure buckling of the central brace. To study the hysteretic performance of the brace, three braces with different shapes of holes were designed, and the specimens were subjected to low cycle reversed loading test and finite element simulation analysis. The results show that under the action of axial force, the energy dissipation of the brace is mainly dependent on the plastic deformation of the plates between the web holes. During the loading process, the bolt appeared to slip and the hysteresis curve exhibited pinching phenomenon in different degrees. The energy dissipation capacity of the specimens with elliptical holes is the best, and the load-bearing capacity of the specimens with diamond-shaped holes is the highest. Reducing the aspect ratio of the plate between the holes of the web can significantly improve the bearing capacity and energy dissipation capacity of the specimen during later stages of loading. The impact on energy dissipation capacity of the specimen by reducing the height-to-thickness ratio of the plate between holes is not significant. Furthermore, under the same opening ratio, it has been observed that the energy dissipation capacity of the specimens with elliptical holes provide higher load-bearing capacity compared to those with slotted circular and diamond-shaped holes.
装配式耗能支撑 / 开孔形状 / 低周往复加载试验 / 滞回性能 / 有限元分析 / 开孔率
assembled energy dissipation brace / hole shape / low cycle reversed loading test / hysteretic performance / finite element analysis / opening ratio
| [1] |
周云.金属耗能减震结构设计[M].武汉:武汉理工大学出版社,2006:29-37. |
| [2] |
ZHOU Yun.Structural design of metal energy dissipation and shock absorption[M].Wuhan:Wuhan University of Technology Press,2006:29-37.(in Chinese) |
| [3] |
郭彦林,童精中,周鹏.防屈曲支撑的型式、设计理论与应用研究进展[J].工程力学,2016,33(9):1-14.DOI:10.6052/j.issn.1000-4750.2016.04.ST01. |
| [4] |
GUO Yanlin,TONG Jingzhong,ZHOU Peng.Research progress of buckling restrained braces:types,design methods and applications[J].Engineering Mechanics,2016,33(9):1-14.DOI:10.6052/j.issn.1000-4750.2016.04.ST01.(in Chinese) |
| [5] |
GENNA F,GELFI P.Analysis of the lateral thrust in bolted steel buckling-restrained braces.I:Experimental and numerical results[J].Journal of Structural Engineering,2012,138(10):1231-1243.DOI:10.1061/(asce)st.1943-541x. 0000558. |
| [6] |
GENNA F,GELFI P.Analysis of the lateral thrust in bolted steel buckling-restrained braces.II:Engineering analytical estimates[J].Journal of Structural Engineering,2012,138(10):1244-1254.DOI:10.1061/(asce)st.1943-541x.0000564. |
| [7] |
郭彦林,张博浩,王小安,装配式防屈曲支撑设计理论的研究进展[J].建筑科学与工程学报,2013,30(1):1-12.DOI:10.3969/j.issn.1673-2049.2013.01.001. |
| [8] |
GUO Yanlin,ZHANG Bohao,WANG Xiaoan,et al.Research progress on design theory of assembled buckling-restrained brace[J].Journal of Architecture and Civil Engineering,2013,30(1):1-12.DOI:10.3969/j.issn.1673-2049.2013.01.001.(in Chinese) |
| [9] |
李伟,吴斌,丁勇.H型钢防屈曲支撑抗震性能试验研究[J].建筑结构学报,2013,34(12):94-102.DOI:10.14006/j.jzjgxb.2013.12.013. |
| [10] |
LI Wei,WU Bin,DING Yong.Experimental study on seismic behaviors of H-section steel buckling-restrained braces[J].Journal of Building Structures,2013,34(12):94-102.DOI:10.14006/j.jzjgxb.2013.12.013.(in Chinese) |
| [11] |
屠义新,袁波,易金刚.新型剪切型全装配式防屈曲耗能支撑的耗能性能分析[J].贵州大学学报(自然科学版),2016,33(6):77-82.DOI:10.15958/j.cnki.gdxbzrb.2016.06.18. |
| [12] |
TU Yixin,YUAN Bo,YI Jingang.Energy dissipation capability analysis of new shear-type of whole assemble buckling-restrained brace[J].Journal of Guizhou University (Natural Sciences),2016,33(6):77-82.DOI:10.15958/j.cnki.gdxbzrb.2016.06.18.(in Chinese) |
| [13] |
龚晨,周云,钟根全,开孔参数对装配式开孔钢板屈曲约束支撑性能影响研究[J].建筑结构学报,2018,39(增刊2):328-335.DOI:10.14006/j.jzjgxb.2018.S2.045. |
| [14] |
GONG Chen,ZHOU Yun,ZHONG Genquan,et al.Performance of perforated steel-plate assembled buckling-restrained brace with different perforated parameters[J].Journal of Building Structures,2018,39(Suppl.2):328-335.DOI:10.14006/j.jzjgxb.2018.S2.045.(in Chinese) |
| [15] |
陈磊,王东升,孙治国,装配式开孔不锈钢防屈曲支撑抗震性能试验研究[J].工程力学,2024,41(7):226-238.DOI:10.6052/j.issn.1000-4750.2022.06.0545. |
| [16] |
CHEN Lei,WANG Dongsheng,SUN Zhiguo,et al.Experimental study on seismic behavior of assembled buckling-restrained brace with perforated stainless-steel plate[J].Engineering Mechanics,2024,41(7):226-238.DOI:10.6052/j.issn.1000-4750.2022.06.0545.(in Chinese) |
| [17] |
黄晨凯,赵宝成.开孔形式影响装配式耗能支撑滞回性能研究[J].工程力学,2021,38(12):81-96.DOI:10.6052/j.issn. 1000-4750.2020.11.0800. |
| [18] |
HUANG Chenkai,ZHAO Baocheng.Influences of the shape of holes on the hysteretic performance of assembled energy dissipation braces[J].Engineering Mechanics,2021,38(12):81-96.DOI:10.6052/j.issn.1000-4750.2020.11.0800.(in Chinese) |
| [19] |
YUN Z,CAO Y S,TAKAGI J,et al.Experimental and numerical investigation of a novel all-steel assembled core-perforated buckling-restrained brace[J].Journal of Constructional Steel Research,2022,193:107288.DOI:10.1016/j.jcsr.2022.107288. |
| [20] |
鲁亮,刘霞,代桂霞.轴向拉压型金属阻尼器抗震性能测试及其应用研究[J].振动与冲击,2017,36(16):141-147.DOI:10.13465/j.cnki.jvs.2017.16.022. |
| [21] |
LU Liang,LIU Xia,DAI Guixia.An experimental study on the mechanical properties of an axial compression-tension metallic damper and its application[J].Journal of Vibration and Shock,2017,36(16):141-147.DOI:10.13465/j.cnki.jvs.2017.16.022.(in Chinese) |
| [22] |
张令心,朱柏洁,王涛.形状优化的菱形开孔剪切型金属阻尼器减震性能[J].沈阳建筑大学学报(自然科学版),2018,34(4):655-665.DOI:10.11717/j.issn:2095-1922.2018.04.10. |
| [23] |
ZHANG Lingxin,ZHU Baijie,WANG Tao.Study on mechanical behavior of assembled steel shear panel dampers with optimized diamond hole[J].Journal of Shenyang Jianzhu University (Natural Science),2018,34(4):655-665.DOI:10.11717/j.issn:2095-1922.2018.04.10.(in Chinese) |
| [24] |
孙筱玮,赵宝成,沈晓明.新型腹板开孔屈服耗能支撑滞回性能分析[J].工程抗震与加固改造,2019,41(3):15-25.DOI:10.16226/j.issn.1002-8412.2019.03.003. |
| [25] |
SUN Xiaowei,ZHAO Baocheng,SHEN Xiaoming.Finite element analysis on the innovative brace dissipated energy by yielded perforated web[J].Earthquake Resistant Engineering and Retrofitting,2019,41(3):15-25.DOI:10.16226/j.issn.1002-8412.2019.03.003.(in Chinese) |
| [26] |
孙筱玮,赵宝成,沈晓明.装配式工字钢腹板开孔屈服耗能支撑滞回性能分析[J].建筑钢结构进展,2020,22(6):36-45.DOI:10.13969/j.cnki.cn31-1893.2020.06.004. |
| [27] |
SUN Xiaowei,ZHAO Baocheng,SHEN Xiaoming.Hysteretic behavior analysis on a new energy-dissipating bracing with yielded perforated web[J].Progress in Steel Building Structures,2020,22(6):36-45.DOI:10.13969/j.cnki.cn31-1893.2020. 06.004.(in Chinese) |
| [28] |
沈婷悦,赵宝成.腹板开椭圆孔耗能支撑滞回性能试验研究[J].建筑钢结构进展,2022,24(6):29-39.DOI:10.13969/j.cnki.cn31-1893.2022.06.004. |
| [29] |
SHEN Tingyue,ZHAO Baocheng.Experimental study on hysteretic behavior of energy dissipation braces with elliptical web openings[J].Progress in Steel Building Structures,2022,24(6):29-39.DOI:10.13969/j.cnki.cn31-1893.2022.06.004.(in Chinese) |
| [30] |
蒋友宝,丁贤钟,罗文辉,开孔方式对钢板拉压屈服阻尼器耗能的影响[J].工程抗震与加固改造,2022,44(6):77-84.DOI:10.16226/j.issn.1002-8412.2022.06.011. |
| [31] |
JIANG Youbao,DING Xianzhong,LUO Wenhui,et al.Influences of perforation forms on energy dissipation for damper with tension and compression yielding of stell plate[J].Earthquake Resistant Engineering and Retrofitting,2022,44(6):77-84.DOI:10.16226/j.issn.1002-8412.2022.06.011.(in Chinese) |
| [32] |
顾晨姣.装配式槽钢开孔耗能支撑滞回性能试验研究及有限元分析[D].苏州:苏州科技大学,2021. |
| [33] |
GU Chenjiao.Test research and finite element anslysis on the hysteretic behavior of assembled brace dissipated energy by yielded perforated channel steel[D].Suzhou:Suzhou University of Science and Technology,2021.(in Chinese) |
| [34] |
国家市场监督管理总局,国家标准化管理委员会.钢及钢产品 力学性能试验取样位置及试样制备:GB/T 2975—2018[S].北京:中国标准出版社,2018. |
| [35] |
State Administration for Market Regulation,Standardization Administration of the People's Republic of China.Steel and Steel Products—Location and Preparation of Test Pieces for Mechanical Testing:GB/T 2975—2018[S].Beijing:Standards Press of China,2018.(in Chinese) |
| [36] |
国家市场监督管理总局,国家标准化管理委员会.金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021. |
| [37] |
State Administration for Market Regulation,Standardization Administration of the People's Republic of China.Metallic Materials—Tensile Testing:Part 1:Method of Test at Room Temperature:GB/T 228.1—2021[S].Beijing:Standards Press of China,2021.(in Chinese) |
| [38] |
The SAC Joint Venture,Protocol for Fabrication,Inspection,Testing and Documentation of Beam-Column Connection Test and Other Experimental Specimens:SAC/BD-97/02[S].Apteco,Sacramento,Calif:SAC Joint Venture,1997. |
国家自然科学基金(51878432)
江苏省研究生科研创新计划项目(KYCX22_3287)
/
| 〈 |
|
〉 |