金属消能器-屈曲约束支撑复合减震构件抗震性能研究
Study on Seismic Performance of Buckling-Restrained Brace Combined with Steel Yielding Damper
为提高屈曲约束支撑(buckling-restrained brace,BRB)在小变形阶段的消能性能,将金属消能器与国产Q355钢芯材的BRB并联,构成新型多级屈服复合减震(简称SD-BRB)构件。在试件小变形阶段,金属消能器率先屈服消能;当试件变形增大时,BRB进入屈服阶段,从而实现两阶段屈服设计目标。文中设计了2根试件,用以通过试验对比复合减震构件与常规BRB构件的抗震性能。试验结果表明:与国产Q355钢为芯材的BRB并联的构件其抗震性能满足建筑抗震设计规范的要求。相比传统BRB,新型复合减震构件小变形阶段的消能能力为BRB相应消能能力的2.4倍。基于试验结果建立了有限元分析模型,探究金属消能器与BRB屈服承载力比值及套筒刚度对复合减震构件在小变形阶段消能性能的影响。有限元分析结果表明:金属消能器与BRB屈服承载力比值为0.05~0.10,套筒轴向刚度为金属消能器弹性刚度的2.5~3.0倍时,复合减震构件在小变形阶段的消能能力较优。根据构件特征、试验和有限元分析结果,给出了复合减震构件的力学模型及实用设计方法。
In order to improve the energy dissipation capacity of buckling-retained brace (BRB) under small deformation, a new type of two-stage yielding buckling-restrained brace is proposed. In this system, shear-plate steel yielding dampers are connected in parallel to the BRB out of the tube of BRB, which can be called SD-BRB.In the small deformation stage, the shear-plate steel yielding damper yields to dissipate energy. As the deformation increases, the BRB enters the yield stage, thereby achieving the goal of two-stage yielding. Through comparative tests between BRB and SD-BRB, it was found that the energy dissipation capacity of SD-BRB increased by 2.4 times during the small deformation stage. Based on the experimental results, finite element analysis models were established to study the effect of the ratio of yield bearing capacity between steel yielding damper and BRB, as well as the axial stiffness of steel tube, on the energy dissipation capacity of SD-BRB. The results indicate that when the yield bearing capacity ratio is between 0.05 and 0.10, and the axial stiffness of steel tube is 2.5 to 3.0 times that of the elastic stiffness of the steel yielding damper, the SD-BRB exhibits superior energy dissipation capacity during the small deformation stage. Based on the structural characteristics and results of experiments and finite element analysis, a mechanical model and practical design method for SD-BRB are proposed.
金属消能器 / 屈曲约束支撑 / 复合减震构件 / 消能能力 / 抗震性能 / 实用设计方法
steel yielding damper / buckling-restrained brace / composite damper / energy dissipation capacity / seismic performance / practical design method
| [1] |
赵昕,杜冰洁,李浩.超高层建筑黏滞阻尼器及屈曲约束支撑混合减振结构系统集成优化设计[J].建筑结构学报,2020,41(3):25-35.DOI:10.14006/j.jzjgxb.2019.0136. |
| [2] |
ZHAO Xin,DU Bingjie,LI Hao.Integrated optimization design of hybrid vibration damping structure system of viscous damper and buckling restrained brace for super high-rise buildings[J].Journal of Building Structures,2020,41(3):25-35.DOI:10.14006/j.jzjgxb.2019.0136.(in Chinese) |
| [3] |
周颖,李宏描,邢丽丽.混合控制消能减震伸臂桁架上海中心抗震性能研究[J].振动与冲击,2016,35(21):188-195,228.DOI:10.13465/j.cnki.jvs.2016.21.030. |
| [4] |
ZHOU Ying,LI Hongmiao,XING Lili.Aseismic performance of Shanghai center with hybrid control energy dissipation outriggers[J].Journal of Vibration and Shock,2016,35(21):188-195,228.DOI:10.13465/j.cnki.jvs.2016.21.030.(in Chinese) |
| [5] |
XING L L,ZHOU Y,AGUAGUIÑA M.Optimal vertical configuration of combined energy dissipation outriggers[J].The Structural Design of Tall and Special Buildings,2019,28(4):e1579.DOI:10.1002/tal.1579. |
| [6] |
MAGAR PATIL H R,JANGID R S.Numerical study of seismic performance of steel moment-resisting frame with buckling-restrained brace and viscous fluid damper[J].The IES Journal Part A:Civil & Structural Engineering,2015,8(3):165-174.DOI:10.1080/19373260.2015.1038862. |
| [7] |
LI Y,QU H,XIAO S,et al.Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube[J].Steel and Composite Structures,2019,30(2):81-96.DOI:10. 12989/scs.2019.30.2.081. |
| [8] |
吴克川,陶忠,潘文,基于性能的屈曲约束支撑与黏滞阻尼器组合减震结构设计方法[J].土木与环境工程学报(中英文),2021,43(3):83-92.DOI:10.11835/j.issn.2096-6717.2020.199. |
| [9] |
WU Kechuan,TAO Zhong,PAN Wen,et al.Performance-based design method of combined energy dissipation structure with buckling restrained brace and viscous damper[J].Journal of Civil and Environmental Engineering,2021,43(3):83-92.DOI:10.11835/j.issn.2096-6717.2020.199.(in Chinese) |
| [10] |
陈焰周,申涛,李霆,昆明国家开发银行大楼混合减震分析[J].工程抗震与加固改造,2017,39(4):18-25.DOI:10.16226/j.issn.1002-8412.2017.04.003. |
| [11] |
CHEN Yanzhou,SHEN Tao,LI Ting,et al.Seismic performance analysis of Kunming development bank office[J].Earthquake Resistant Engineering and Retrofitting,2017,39(4):18-25.DOI:10.16226/j.issn.1002-8412.2017.04.003.(in Chinese) |
| [12] |
周颖,胡擎,吴日利.复合消能支撑的抗震性能试验研究[J].中南大学学报(自然科学版),2018,49(7):1726-1733.DOI:10.11817/j.issn.1672-7207.2018.07.020. |
| [13] |
ZHOU Ying,HU Qing,WU Rili.Experimental study on seismic behavior of viscoelastic buckling restrained braces[J].Journal of Central South University (Science and Technology),2018,49(7):1726-1733.DOI:10.11817/j.issn.1672-7207.2018.07.020.(in Chinese) |
| [14] |
KIM D H,LEE C H,JU Y K.Experimental investigation of hybrid buckling-restrained braces[J].International Journal of Steel Structures,2017,17(1):245-255.DOI:10.1007/s13296-016-0186-5. |
| [15] |
陈云,陈超,蒋欢军,O型钢板-高阻尼黏弹性复合型消能器的力学性能试验与分析[J].工程力学,2019,36(1):119-128. |
| [16] |
CHEN Yun,CHEN Chao,JIANG Huanjun,et al.Experiment analysis of mechanical properties of O-shaped steel plates and high damping viscoelastic composite energy dissipators[J].Engineering Mechanics,2019,36(1):119-128.(in Chinese) |
| [17] |
SUN J B,PAN P,WANG H S.Development and experimental validation of an assembled steel double-stage yield buckling restrained brace[J].Journal of Constructional Steel Research,2018,145:330-340.DOI:10.1016/j.jcsr.2018.03.003. |
| [18] |
胡宝琳,徐世安,徐庆,三阶屈服屈曲约束支撑耗能机理及设计方法研究[J].工程力学,2023,40(8):105-114.DOI:10.6052/j.issn.1000-4750.2021.12.0969. |
| [19] |
HU Baolin,XU Shian,XU Qing,et al.Study on energy dissipation mechanism and design method of triple yield buckling-restrained brace[J].Engineering Mechanics,2023,40(8):105-114.DOI:10.6052/j.issn.1000-4750.2021.12.0969.(in Chinese) |
| [20] |
李帼昌,闫鹤丹,邱增美.装配式双铝合金内芯屈曲约束支撑滞回性能试验研究[J].建筑结构学报,2023,44(5):209-220.DOI:10.14006/j.jzjgxb.2021.0887. |
| [21] |
LI Guochang,YAN Hedan,QIU Zengmei.Hysteresis performance test of double aluminum alloy plate-assembled buckling-restrained braces[J].Journal of Building Structures,2023,44(5):209-220.DOI:10.14006/j.jzjgxb.2021.0887.(in Chinese) |
| [22] |
LI G Q,SUN Y Z,JIANG J,et al.Experimental study on two-level yielding buckling-restrained braces[J].Journal of Constructional Steel Research,2019,159:260-269.DOI:10.1016/j.jcsr.2019.04.042. |
| [23] |
胡大柱,孙航,徐一鸣,轴向布置金属阻尼器力学性能研究[J].地震工程与工程振动,2021,41(1):122-131.DOI:10.13197/j.eeev.2021.01.122.hudz.015. |
| [24] |
HU Dazhu,SUN Hang,XU Yiming,et al.Study on mechanical properties of axial arrangement metal damper[J].Earthquake Engineering and Engineering Dynamics,2021,41(1):122-131.DOI:10.13197/j.eeev.2021.01.122.hudz.015.(in Chinese) |
| [25] |
国家市场监督管理总局,国家标准化管理委员会.金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021. |
| [26] |
State Administration for Market Regulation,Standardization Administration of the People's Republic of China.Metallic materials—Tensile testing—Part 1:Method of Test at Room Temperature:GB/T 228.1—2021[S].Beijing:Standards Press of China,2021.(in Chinese) |
| [27] |
中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB50011—2010[S].北京:中国建筑工业出版社,2010. |
| [28] |
Ministry of Housing and Urban-Rural Development of the People's Republic of China.Code for Seismic Design of Buildings:GB50011—2010[S].Beijing:China Architecture & Building Press,2010.(in Chinese) |
| [29] |
周颖,黄智谦,MARIO A,屈曲约束支撑力学性能试验加载制度研究[J].建筑结构学报,2021,42(11):182-194.DOI:10.14006/j.jzjgxb.2019.0713. |
| [30] |
ZHOU Ying,HUANG Zhiqian,MARIO A,et al.Loading protocols for mechanical property qualification test of buckling-restrained braces[J].Journal of Building Structures,2021,42(11):182-194.DOI:10.14006/j.jzjgxb.2019.0713.(in Chinese) |
| [31] |
Seismic Provisions for Structural Steel Buildings:ANSI/AISC 341-05[S].Chicago:America Institute of Steel Construction,2010. |
| [32] |
中华人民共和国住房和城乡建设部.建筑消能阻尼器:JG/T 209—2012[S].北京:中国标准出版社,2012. |
| [33] |
Ministry of Housing and Urban-Rural Development of the People's Republic of China.Dampers for Vibration Energy Dissipation of Buildings:JG/T 209—2012[S].Beijing:Standards Press of China,2012.(in Chinese) |
| [34] |
王萌,钱凤霞,杨维国,低屈服点钢材与Q345B和Q460D钢材本构关系对比研究[J].工程力学,2017,34(2):60-68.DOI:10.6052/j.issn.1000-4750.2016.01.0051. |
| [35] |
WANG Meng,QIAN Fengxia,YANG Weiguo,et al.Comparison study on constitutive relationship of low yield point steels,Q345B steel and Q460D steel[J].Engineering Mechanics,2017,34(2):60-68.DOI:10.6052/j.issn.1000-4750.2016.01. 0051.(in Chinese) |
| [36] |
中华人民共和国住房和城乡建设部.建筑消能减震技术规程:JGJ 297—2013[S].北京:中国建筑工业出版社,2013. |
| [37] |
Ministry of Housing and Urban-Rural Development of the People's Republic of China.Technical Specification for Seismic Energy Dissipation of Buildings:JGJ 297—2013[S].Beijing:China Architecture & Building Press,2013.(in Chinese) |
国家自然科学基金(51408361)
/
| 〈 |
|
〉 |