紫花前胡苷通过抑制肠上皮细胞焦亡改善2,4,6-三硝基苯磺酸诱导的小鼠实验性结肠炎

黄菊 ,  殷丽霞 ,  牛民主 ,  耿志军 ,  左芦根 ,  李静 ,  胡建国

南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (02) : 261 -268.

PDF (2440KB)
南方医科大学学报 ›› 2025, Vol. 45 ›› Issue (02) : 261 -268. DOI: 10.12122/j.issn.1673-4254.2025.02.07

紫花前胡苷通过抑制肠上皮细胞焦亡改善2,4,6-三硝基苯磺酸诱导的小鼠实验性结肠炎

作者信息 +

Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells

Author information +
文章历史 +
PDF (2498K)

摘要

目的 探讨天然植物单体紫花前胡苷(Nod)对克罗恩病(CD)样结肠炎的影响及其作用机制。 方法 建立脂多糖和三磷酸腺苷(ATP)联合诱导的结肠类器官焦亡模型,通过检测焦亡关键调节因子、通透性和促炎因子,探讨Nod对细胞焦亡、肠道屏障功能和炎症反应的影响。以2,4,6-三硝基苯磺酸(TNBS)干预小鼠为CD动物模型,通过检测体质量、DAI评分、组织病理学分析、炎症评分、肠屏障功能和肠上皮细胞焦亡,探讨Nod对CD样结肠炎的治疗效果。通过网络药理学和体内、体外实验验证探索Nod保护肠上皮细胞焦亡的潜在机制。 结果 脂多糖和ATP诱导的结肠类器官经Nod干预后显著抑制NLRP3、GSDMD-N、cleaved caspase-1和caspase-11的表达,改善肠道FITC-dextran(FD4,4000)通透性,以及降低IL-1β和IL-18水平(P<0.05)。在TNBS诱导的结肠炎小鼠中,Nod治疗后能缓解小鼠体质量下降幅度、降低DAI评分、改善炎症细胞浸润和炎症评分(P<0.05),并降低血清中FD4、I-FABP的含量与细菌移位至肠系膜淋巴结、脾和肝脏中比例(P<0.05)。Nod可抑制小鼠肠黏膜中NLRP3、GSDMD-N、cleaved caspase-1和caspase-11的表达(P<0.05)。网络药理学预测分析显示,Nod抗结肠炎可能与PI3K/Akt通路有关;体内外实验证实,Nod抑制PI3K/Akt通路的激活,且PI3K/Akt通路的激活剂(IGF-1)逆转了Nod对肠上皮细胞焦亡和肠屏障功能的保护作用(P<0.05)。 结论 Nod至少部分通过抑制PI3K/Akt信号传导拮抗肠上皮细胞的焦亡,从而保护肠屏障功能和改善CD样结肠炎,有望成为一种新的CD治疗药物。

Abstract

Objective To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice. Methods Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments. Results In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction. Conclusion Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.

Graphical abstract

关键词

克罗恩病 / 紫花前胡苷 / 细胞焦亡 / 肠上皮细胞 / PI3K/Akt

Key words

Crohn's disease / nodakenin / pyroptosis / intestinal epithelial cell / PI3K/Akt

引用本文

引用格式 ▾
黄菊,殷丽霞,牛民主,耿志军,左芦根,李静,胡建国. 紫花前胡苷通过抑制肠上皮细胞焦亡改善2,4,6-三硝基苯磺酸诱导的小鼠实验性结肠炎[J]. 南方医科大学学报, 2025, 45(02): 261-268 DOI:10.12122/j.issn.1673-4254.2025.02.07

登录浏览全文

4963

注册一个新账户 忘记密码

克罗恩病(CD)是一种慢性、复发性炎症性肠病,全球发病率不断上升12。CD患者的肠黏膜中存在大量的细胞焦亡,其数量与CD患者的临床疾病活动指数评分(DAI)呈正相关3。细胞焦亡是依赖于半胱天冬酶-1(caspase-1)和Gasdermin介导的死亡3-5,Gasdermin D(GSDMD)会被活化的caspase-1分解为N端结构域(GSDMD-N)和C端结构域(GSDMD-C)6,GSDMD-N与细胞膜结合,导致孔隙形成、细胞肿胀和破裂,并通过释放促炎细胞因子和免疫原性损伤相关分子模式诱导过度炎症反应,从而破坏肠上皮屏障,参与CD的病理过程78。因此,改善细胞焦亡有望保护CD的肠道屏障和黏膜炎症反应。目前用于CD治疗的药物有不同程度的副作用和耐受性,而天然植物单体在实验动物中显示出较小的毒副作用,且无耐药性9-14。中药香豆素复方的有效成分紫花前胡苷(Nod)已被证明可抑制慢性肾病NOD样受体热蛋白结构域相关蛋白3(NLRP3)炎性小体的活化1516,而NLRP3炎性体的活化会促进GSDMD的裂解,并介导细胞焦亡的发生17-20。然而,Nod在CD中的作用尚无报道。本研究旨在探讨Nod对CD样结肠炎的有益作用及其潜在分子机制,通过建立TNBS诱导的结肠炎模型与脂多糖(LPS)和三磷酸腺苷(ATP)诱导结肠类器官模型,探讨Nod对肠上皮细胞焦亡、肠屏障功能和肠炎的影响,并结合网络药理学和体内外实验探索Nod的作用机制。

1 材料和方法

1.1 材料

Nodakenin(上海源叶生物科技有限公司);GCDR温和解离试剂和IntestiCult结肠类器官生长培养基(STEMCELL Technologies);LPS、ATP、IGF-1、TNBS、FITC-dextran(Sigma);兔抗GSDMD-N、兔抗caspase-1、兔抗caspase-11、兔抗NLRP3、FITC-conjugated goat anti-rabbit IgG (H+L)和Alexa Fluor® 594-conjugated goat anti-mouse IgG (H+L)(Abcam);鼠抗villin(Santa Cruz Biotechnology);兔抗C-caspase-1、兔抗p-PI3K和兔抗PI3K(CST);鼠抗p-Akt和兔抗Akt(Proteintech);酶标山羊抗兔IgG聚合物、兔抗GAPDH和HRP-偶联的山羊抗小鼠/兔IgG(ZSGB-BIO);ELISA试剂盒(武汉博士德生物工程有限公司);cDNA反转试剂盒和TB Green® Premix Ex Taq™ II检测系统(TaKaRa)。

1.2 方法

1.2.1 结肠类器官培养和干预

颈椎脱臼处理小鼠,置于75%的乙醇中浸泡30 min,解剖并取出结肠组织,清洗干净后细分割成多个肠管节段,放入冷的D-PBS中将肠系膜等剔除干净并剖开并剪碎。肠管碎片用预冷的D-PBS重悬自然沉淀,弃去上清液,反复洗涤不少于15次,加入解离试剂(GCDR)在低温摇床上解离30 min。解离完成后经过滤和离心后加入适量基质胶将其固定于24孔板正中央位置,待凝固后加入IntestiCult类器官生长培养基进行培养2122。为验证Nod抗肠上皮细胞焦亡作用,将结肠类器官分为Con组、LPS+ATP组和Nod组。LPS+ATP组:经5 mmol/L的ATP刺激2 h后,再经200 ng/mL的LPS处理8 h,建立结肠类器官焦亡模型23;Nod组:经ATP和LPS处理后的类器官组织,用Nod(10 μmol/L)干预24 h。为验证PI3K/Akt在Nod抗细胞焦亡中的调控机制,将类器官分为LPS+ATP组、Nod组和IGF-1(PI3K/Akt激活剂)组,其中IGF-1组类器官与IGF-1(10 μmol/L)预孵育30 min24,再经ATP、LPS和Nod进行干预。

1.2.2 动物干预和分组

野生型(WT)小鼠(C57BL/6,6~8周龄)购自南京大学动物模型研究中心,在SPF环境中饲养。将小鼠随机分为3组(10只/组):WT组、TNBS组和Nod组。TNBS组模型建立25:小鼠腹腔注射0.7%戊巴比妥进行麻醉,将5%的2,4,6-三硝基苯磺酸(TNBS)溶液与等体积的无水乙醇溶液混合,通过细导管经肛门注入小鼠结肠。TNBS诱导的小鼠随机分为两组,TNBS组小鼠接受生理盐水治疗,Nod组小鼠接受Nod治疗(20 mg/kg,口服)1526,WT组同样接受生理盐水治疗。干预8 d后,解剖小鼠取结肠组织,一部分固定在10%福尔马林中用于组织病理检测,另一部分保存在-80 ℃用于免疫印迹和ELISA检测。体内动物实验已获蚌埠医科大学动物伦理委员会批准(伦理批号:伦动科批字[2021]第226号)。

1.2.3 肠道炎症的检测

1.2.3.1 肠炎症状

根据取检与造模当日小鼠体质量的差值分析小鼠体质量变化。DAI评分主要根据小鼠体质量指数、粪便形状和便血情况的标准进行评估24

1.2.3.2 肠屏障功能检测

禁食4 h的小鼠经灌胃FITC-dextran(4000,FD4;400 mg/kg),4 h后通过心脏穿刺取血,离心分离血清,用荧光测定法评估血清FITC水平。体外FD4分析类器官通透性:在生长培养基中加入0.1 mg/mL的FD4,24 h后测量进入结肠类器官中的FD4通量。

1.2.3.3 细菌移位分析

参考文献所述27,采用无菌技术收集肠系膜淋巴结(MLNs)、脾脏和肝脏,称重并将组织匀浆至0.1 g/mL。取100 μL的匀浆液接种于MacConkey培养板上,于37 ℃下培养24 h,超过102个菌落形成单位/g的组织判断为阳性。

1.2.4 组织病理学分析

1.2.4.1 HE染色和炎症评分

经10%福尔马林固定后的小鼠结肠组织经脱水、包埋和制成4 μm厚的石蜡切片,切片经二甲苯与酒精梯度脱蜡、苏木素与伊红染色、酒精梯度水化后,最后通过中性树脂封片和采集图片,并进行炎症评分24

1.2.4.2 免疫组织化学染色

结肠组织石蜡切片经脱蜡、抗原修复、封闭、兔抗GSDMD-N孵育(1∶400,Abcam)和酶标山羊抗兔IgG聚合物(ZSGB-BIO)孵育,再对细胞核进行苏木素复染。

1.2.4.3 免疫荧光染色

结肠类器官和结肠组织的切片经过脱蜡、抗原修复、封闭、一抗孵育[兔抗GSDMD-N(1∶200,Abcam),兔抗NLRP3(1∶400,Abcam),兔抗caspase-11(1∶400,Abcam)和鼠抗villin(1∶200,Santa Cruz Biotechnology)]和二抗孵育[FITC-conjugated goat anti-rabbit IgG (H+L) (1∶1000,Abcam) and/or Alexa Fluor® 594-conjugated goat anti-mouse IgG (H+L) (1∶500,Abcam)]。最后,经DAPI对细胞核进行复染,并置于激光共聚焦显微镜下采集图片。

1.2.5 ELISA检测

小鼠肠黏膜组织裂解液和血清以及结肠类器官的培养液,经离心(1000×g)30 min收集上清液。根据ELISA说明书检测白介素(IL)-1β,IL-18和I-FABP的表达水平。

1.2.6 qRT-PCR分析

用TRIzol提取小鼠结肠黏膜组织和结肠类器官中的总RNA。1 μg的RNA经cDNA反转试剂盒合成cDNA。根据说明书使用TB Green® Premix Ex Taq™ II检测系统进行实时定量PCR检测。引物由上海生工合成,引物序列见表1

1.2.7 免疫印迹检测

通过含有蛋白酶和磷酸酶抑制剂的RAPI裂解液充分裂解小鼠肠黏膜组织和结肠类器官,离心收集上清液。总蛋白经煮沸变性、电泳分离和湿转至PVDF膜上。膜再经封闭、孵育抗体[兔抗NLRP3(1∶1000,Abcam)、兔抗GSDMD-N(1∶1000,Abcam)、兔抗C-caspase-1(1∶1000,CST)、兔抗caspase-1(1∶1000,Abcam)、兔抗caspase-11(1∶1000,Abcam)、兔抗p-PI3K(1∶1000,CST)、鼠抗p-Akt(1:1000,Proteintech)、兔抗PI3K(1∶1000,CST)、兔抗Akt(1∶1000,Proteintech)、兔抗GAPDH(1∶1000,ZSGB-BIO)]和HRP-偶联的山羊抗小鼠/兔IgG(1∶3000,ZSGB-BIO)。最后,使用凝胶成像系统采集图片。

1.2.8 通路富集分析

将Cytoscape3.9.1中通过MCODE插件筛选得到的靶标导入DAVID(https://david.ncifcrf.gov/)数据库,进行KEGG通路富集分析。使用P值对前20个富集结果进行可视化,保留P<0.05的输出结果作为筛选结果。

1.3 统计学分析

采用SPSS 26.0软件进行数据分析,计量资料表示为均数±标准差,组间差异采用t检验或单因素方差分析,细菌移位率的比较采用卡方检验,实验至少重复3次。P<0.05认为差异具有统计学意义。

2 结果

2.1 Nod抑制LPS和ATP诱导的结肠类器官中肠上皮细胞的焦亡

免疫荧光结果显示,Nod抑制GSDMD-N、NLRP3和caspase-11着色的阳性细胞数量(P<0.05,图1A)。Western blotting检测显示,Nod降低GSDMD-N、NLRP3、c-caspase-1和caspase-11的水平(图1B)。

2.2 Nod降低LPS和ATP诱导的结肠类器官的通透性及炎症因子的释放

LPS和ATP刺激后FD4的通透性增加,经Nod干预后大幅度降低(P<0.05,图2A、B)。相对于LPS+ATP组,Nod组类器官中IL-1β和IL-18的mRNA水平和蛋白浓度降低(P<0.05,图2C、D)。

2.3 Nod改善TNBS诱导小鼠的实验性结肠炎

TNBS小鼠经Nod治疗后,其体质量下降幅度缓解(P<0.05,图3A),DAI评分降低(P<0.05,图3B)。HE染色结果显示,Nod改善了TNBS小鼠结肠组织中炎症细胞的浸润和炎症评分(P<0.05,图3C、D)。Nod组小鼠黏膜组织中IL-1β和IL-18的mRNA和蛋白水平均降低(P<0.05,图3E、F)。

2.4 Nod保护TNBS诱导小鼠肠屏障功能障碍

肠屏障通透性检测发现,相对于TNBS组,Nod治疗后小鼠血清中FD4和I-FABP降低(P<0.05,图4A、B)。细菌移位结果显示,从肠道移位至肠系膜淋巴结、脾脏和肝脏细菌比例下降(P<0.05,图4C~E)。

2.5 Nod抑制TNBS诱导小鼠的肠上皮细胞焦亡

相对于TNBS组,Nod可降低TNBS小鼠肠黏膜组织中GSDMD-N、NLRP3、c-caspase-1和caspase-11的表达(P<0.05,图5A)。免疫组化和免疫荧光染色显示,GSDMD-N着色的阳性细胞和Villin+GSDMD+细胞在TNBS小鼠结肠组织中增多,而经Nod干预后减少(图5B、C)。

2.6 Nod改善TNBS诱导肠炎可能与PI3K/Akt通路有关

网络药理学预测分析发现CD与Nod有70个共同靶点(图6A),KEGG通路预测显示PI3K-Akt通路可能是Nod抗结肠炎作用的关键调控通路(图6B)。Western blotting结果显示,Nod组小鼠肠黏膜组织中p-PI3K和p-Akt的表达低于TNBS组(图6C)。

2.7 Nod通过抑制PI3K/Akt通路的激活改善肠屏障功能和肠上皮细胞焦亡

Nod干预可降低LPS和ATP刺激的结肠类器官中p-PI3K和p-Akt的表达(图7A)。相对于Nod组,PI3K/Akt通路激活剂(IGF-1)上调结肠类器官的FD4通透性、IL-1β、IL-18、GSDMD-N、NLRP3、c-caspase-1和caspase-11的表达水平(P<0.05,图7B~H)。

3 讨论

在CD的发展过程中,肠上皮细胞焦亡导致肠屏障功能受损并引发炎症级联反应,这是一个有趣的治疗靶点28。本研究建立了ATP和LPS刺激小鼠结肠类器官模型,Nod显著抑制NLRP3、GSDMD-N、cleaved caspase-1和caspase-11的蛋白水平以及IL-1β和IL-18的释放。IL-1β和IL-18蛋白前体经caspase-1介导的裂解作用下成熟2930,然后从细胞中分泌出来,进而调节炎症反应。当caspase-1被激活时,细胞膜上会形成1.1~2.4 nm大小的孔,进而使细胞迅速失去离子梯度,导致细胞内渗透压升高和水分膨胀,细胞内容物释放到细胞外,最终诱发细胞焦亡31。焦亡导致肠黏膜屏障受损,使得肠道对细菌和其他有害物质的防御能力下降,从而促进CD的发展。为证实Nod的抗肠炎作用与细胞焦亡有关,本研究建立了TNBS诱导的实验性结肠炎模型,发现在TNBS小鼠结肠组织的肠上皮细胞中GSDMD-N(焦亡的关键执行者32)阳性细胞的数量增多,但经Nod治疗后得到改善,提示Nod能抑制肠上皮细胞的焦亡。鉴于Nod抑制肠上皮细胞焦亡的作用,本研究进一步明确其是否能改善CD样肠炎。首先,Nod能改善CD样小鼠的临床症状,表现为体质量下降幅度和DAI评分均得到缓解。其次,Nod治疗明显改善了炎症细胞的浸润、黏膜层和隐窝的破坏以及炎症评分,并降低肠黏膜炎症因子的表达。据报道,肠上皮屏障功能障碍伴有肠道通透性增加是诱发或维持CD肠道炎症的重要因素之一33。本研究发现,Nod能显著降低TNBS小鼠的肠道通透性和细菌移位。这些结果表明,Nod可通过抑制肠上皮细胞焦亡改善肠炎和保护肠屏障功能障碍,但相关分子机制仍不清楚。

网络药理学预测分析发现PI3K/Akt可能参与Nod的抗肠炎作用中,其不仅在促进小胶质细胞、肾足突细胞和肾小管上皮细胞的焦亡中发挥关键作用34-37,而且还参与结肠炎的发生38-40。为确定PI3K/Akt通路是否介导Nod的抗结肠炎作用,我们检测了体内和体外的PI3K/Akt通路的相关蛋白。在TNBS诱导的结肠炎和结肠类器官焦亡模型中,Nod能明显抑制PI3K/Akt信号转导,更为重要的是PI3K/Akt通路的激活剂能减弱Nod对肠上皮细胞焦亡和肠屏障功能障碍的保护作用。本研究证实,Nod抑制肠上皮细胞焦亡和改善肠屏障功能障碍,至少部分与抑制PI3K/Akt通路转导有关。

CD的传统药物治疗存在不同程度的不良反应和耐受性,而Nod作为一种已被正式安全无毒的天然植物化合物,是一种从伞形科植物根部提取的香豆素苷,其已被证实具有抗菌、抗炎、解痉和抗纤维化等作用,并可改善认知功能、减轻肾脏缺血再灌注损伤1641-43,其有望用于CD的临床治疗,以弥补现有治疗药物的不足。Nod已被证明对多种炎症相关疾病有治疗作用,本研究进一步拓展了其可能的应用领域。此外,本研究首次在结肠炎模型中说明了Nod还具有抑制PI3K/Akt信号的作用。

本实验仍存在以下不足:首先,我们使用的TNBS诱导的小鼠结肠炎模型虽然得到广泛认可,但仍无法完全模拟人类CD;其次,本研究阐明了Nod可通过保护肠上皮细胞焦亡改善肠屏障功能障碍和结肠炎,但Nod的其他途径可能被忽视;最后,本研究只分析了PI3K/Akt信号,不排除Nod通过其他信号调节发挥作用。

综上所述,本研究证实Nod可抑制肠上皮细胞焦亡进而改善TNBS诱导小鼠肠屏障功能障碍和CD样结肠炎,至少部分是通过抑制PI3K/Akt信号通路的激活实现的。加上Nod的安全性,它有望成为一种治疗CD的药物。

参考文献

[1]

Palmela C, Chevarin C, Xu Z, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease[J]. Gut, 2018, 67(3): 574-87.

[2]

Cosnes J, Gower-Rousseau C, Seksik P, et al. Epidemiology and natural history of inflammatory bowel diseases[J]. Gastroenterol, 2011, 140(6): 1785-94.

[3]

Tan G, Huang CY, Chen JY, et al. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn's disease by promoting intestinal inflammation[J]. Cell Rep, 2021, 35(11): 109265.

[4]

Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20: 143-57.

[5]

Cookson BT, Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3): 113-4.

[6]

Shao M, Yan Y, Zhu F, et al. Artemisinin analog SM934 alleviates epithelial barrier dysfunction via inhibiting apoptosis and caspase-1-mediated pyroptosis in experimental colitis[J]. Front Pharmacol, 2022, 13: 849014.

[7]

Kim HM, Kim YM. HMGB1: LPS delivery vehicle for caspase-11-mediated pyroptosis[J]. Immunity, 2018, 49(4): 582-4.

[8]

Liu W, Chen Y, Meng J, et al. Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo [J]. J Neuroinflammation, 2018, 15(1): 48.

[9]

Lauro A, D'Amico F, Gondolesi G. The current therapeutic options for Crohn's disease: from medical therapy to intestinal transplan-tation[J]. Expert Rev Gastroenterol Hepatol, 2017, 11(12): 1105-17.

[10]

Guo BJ, Bian ZX, Qiu HC, et al. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease[J]. Ann N Y Acad Sci, 2017, 1401(1): 37-48.

[11]

Kang JH, Choi S, Jang JE, et al. Wasabia Japonica is a potential functional food to prevent colitis via inhibiting the NF-κB signaling pathway[J]. Food Funct, 2017, 8(8): 2865-74.

[12]

Khare T, Palakurthi SS, Shah BM, et al. Natural product-based nanomedicine in treatment of inflammatory bowel disease[J]. Int J Mol Sci, 2020, 21(11): E3956.

[13]

Xu P, Elizalde M, Masclee A, et al. Corticosteroid enhances epithelial barrier function in intestinal organoids derived from patients with Crohn's disease[J]. J Mol Med, 2021, 99(6): 805-15.

[14]

Zhang X, Zuo L, Geng Z, et al. Vindoline ameliorates intestinal barrier damage in Crohn's disease mice through MAPK signaling pathway[J]. FASEB J, 2022, 36(11): e22589.

[15]

Kim DH, Kim DY, Kim YC, et al. Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice[J]. Life Sci, 2007, 80(21): 1944-50.

[16]

Liao Y, Lin X, Li J, et al. Nodakenin alleviates renal ischaemia-reperfusion injury via inhibiting reactive oxygen species-induced NLRP3 inflammasome activation[J]. Nephrology: Carlton, 2021, 26(1): 78-87.

[17]

Jia YF, Cui RX, Wang C, et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway[J]. Redox Biol, 2020, 32: 101534.

[18]

Karmakar M, Minns M, Greenberg EN, et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis[J]. Nat Commun, 2020, 11: 2212.

[19]

Li S, Sun Y, Song M, et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression[J]. JCI Insight, 2021, 6(23): e146852.

[20]

Wang C, Yang T, Xiao J, et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation[J]. Sci Immunol, 2021, 6(64): eabj3859.

[21]

Lukonin I, Serra D, Challet Meylan L, et al. Phenotypic landscape of intestinal organoid regeneration[J]. Nature, 2020, 586: 275-80.

[22]

Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459: 262-5.

[23]

Chen XL, Liu GL, Yuan YY, et al. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF‑κB signaling[J]. Cell Death Dis, 2019, 10: 906.

[24]

Rong L, Li ZD, Leng X, et al. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway[J]. Biomed Pharmacother, 2020, 122: 109726.

[25]

Zuo L, Li J, Zhang X, et al. Aberrant mesenteric adipose extracellular matrix remodelling is involved in adipocyte dysfunction in Crohn's disease: the role of TLR-4-mediated macrophages[J]. J Crohns Colitis, 2022, 16(11): 1762-76.

[26]

Lim JY, Lee JH, Yun DH, et al. Inhibitory effects of nodakenin on inflammation and cell death in lipopolysaccharide-induced liver injury mice[J]. Phytomedicine, 2021, 81: 153411.

[27]

Zuo LG, Li Y, Wang HG, et al. Cigarette smoking is associated with intestinal barrier dysfunction in the small intestine but not in the large intestine of mice[J]. J Crohns Colitis, 2014, 8(12): 1710-22.

[28]

Dolinger M, Torres J, Vermeire S. Crohn's disease[J]. Lancet, 2024, 403(10432): 1177-91.

[29]

Fantuzzi G, Reed DA, Dinarello CA. IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor[J]. J Clin Invest, 1999, 104(6): 761-7.

[30]

Qu Y, Franchi L, Nunez G, et al. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages[J]. J Immunol, 2007, 179(3): 1913-25.

[31]

Fink SL, Cookson BT. Pillars article: caspase-1-dependent pore formation during pyroptosis leads to osmotic Lysis of infected host macrophages. Cell microbiol. 2006.8: 1812-1825[J]. J Immunol, 2019, 202(7): 1913-26.

[32]

Liu ZJ, Gan L, Xu YT, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF‑κB/GSDMD signal in mice adipose tissue[J]. J Pineal Res, 2017, 63(1): e12414.

[33]

Teshima CW, Dieleman LA, Meddings JB. Abnormal intestinal permeability in Crohn's disease pathogenesis[J]. Ann N Y Acad Sci, 2012, 1258(1): 159-65.

[34]

Liu BH, Tu Y, Ni GX, et al. Total flavones of Abelmoschus manihot ameliorates podocyte pyroptosis and injury in high glucose conditions by targeting METTL3-dependent m6A modification-mediated NLRP3-inflammasome activation and PTEN/PI3K/Akt signaling[J]. Front Pharmacol, 2021, 12: 667644.

[35]

Xu S, Wang J, Jiang JY, et al. TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury[J]. Cell Death Dis, 2020, 11: 693.

[36]

Xu S, Wang J, Zhong J, et al. CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling[J]. Clin Transl Med, 2021, 11(1): e269.

[37]

Zhang CY, Lin TJ, Nie GH, et al. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells[J]. Environ Pollut, 2021, 272: 116403.

[38]

Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function[J]. Gastroenterology, 2007, 132(4): 1359-74.

[39]

Lee G, Goretsky T, Managlia E, et al. Phosphoinositide 3-kinase signaling mediates β-catenin activation in intestinal epithelial stem and progenitor cells in colitis[J]. Gastroenterology, 2010, 139(3): 869-81. e9.

[40]

Liao Y, Xu JH, Qin BY, et al. Advanced oxidation protein products impair autophagic flux in macrophage by inducing lysosomal dysfunction via activation of PI3K-Akt-mTOR pathway in Crohn's disease[J]. Free Radic Biol Med, 2021, 172: 33-47.

[41]

Lee NY, Chung KS, Jin JS, et al. The inhibitory effect of nodakenin on mast-cell-mediated allergic inflammation via downregulation of NF-κB and caspase-1 activation[J]. J Cell Biochem, 2017, 118(11): 3993-4001.

[42]

Rim HK, Cho W, Sung SH, et al. Nodakenin suppresses lipopo-lysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock[J]. J Pharmacol Exp Ther, 2012, 342(3): 654-64.

[43]

Gao QT, Jeon SJ, Jung HA, et al. Nodakenin enhances cognitive function and adult hippocampal neurogenesis in mice[J]. Neurochem Res, 2015, 40(7): 1438-47.

基金资助

RIGHTS & PERMISSIONS

版权所有©《南方医科大学学报》编辑部2021

AI Summary AI Mindmap
PDF (2440KB)

240

访问

0

被引

详细

导航
相关文章

AI思维导图

/