Objective We propose a dual-domain cone beam computed tomography (CBCT) reconstruction framework DualCBR-Net based on improved differentiable domain transform for cone-angle artifact correction. Methods The proposed CBCT dual-domain reconstruction framework DualCBR-Net consists of 3 individual modules: projection preprocessing, differentiable domain transform, and image post-processing. The projection preprocessing module first extends the original projection data in the row direction to ensure full coverage of the scanned object by X-ray. The differentiable domain transform introduces the FDK reconstruction and forward projection operators to complete the forward and gradient backpropagation processes, where the geometric parameters correspond to the extended data dimension to provide crucial prior information in the forward pass of the network and ensure the accuracy in the gradient backpropagation, thus enabling precise learning of cone-beam region data. The image post-processing module further fine-tunes the domain-transformed image to remove residual artifacts and noises. Results The results of validation experiments conducted on Mayo's public chest dataset showed that the proposed DualCBR-Net framework was superior to other comparison methods in terms of artifact removal and structural detail preservation. Compared with the latest methods, the DualCBR-Net framework improved the PSNR and SSIM by 0.6479 and 0.0074, respectively. Conclusion The proposed DualCBR-Net framework for cone-angle artifact correction allows effective joint training of the CBCT dual-domain network and is especially effective for large cone-angle region.
JaffrayDA, SiewerdsenJH, WongJW, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2002, 53(5): 1337-49.
[2]
WangG, ZhaoSY, HeuscherD. A knowledge-based cone-beam X-ray CT algorithm for dynamic volumetric cardiac imaging[J]. Med Phys, 2002, 29(8): 1807-22.
[3]
PauwelsR, ArakiK, SiewerdsenJH, et al. Technical aspects of dental CBCT: state of the art[J]. Dentomaxillofac Radiol, 2015, 44(1): 20140224.
[4]
FeldkampLA, DavisLC, KressJW. Practical cone-beam algorithm[J]. J Opt Soc Am A, 1984, 1(6): 612.
[5]
TuyHK. An inversion formula for cone-beam reconstruction[J]. SIAM J Appl Math, 1983, 43(3): 546-52.
[6]
GrassM, KöhlerT, ProksaR. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories[J]. Phys Med Biol, 2001, 46(6): 1595-610.
[7]
TangX, HsiehJ, NilsenRA, et al. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning[J]. Phys Med Biol, 2006, 51(4): 855-74.
[8]
MoriS, EndoM, KomatsuS, et al. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT[J]. Phys Med Biol, 2006, 51(16): 3953-65.
[9]
GrimmerR, OelhafenM, ElstrømU, et al. Cone-beam CT image reconstruction with extended z range[J]. Med Phys, 2009, 36(7): 3363-70.
[10]
ZhuL, StarmanJ, FahrigR. An efficient estimation method for reducing the axial intensity drop in circular cone-beam CT[J]. Int J Biomed Imaging, 2008: 242841.
[11]
HsiehJ, ChaoE, ThibaultJ, et al. A novel reconstruction algorithm to extend the CT scan field-of-view[J]. Med Phys, 2004, 31(9): 2385-91.
[12]
HsiehJ. Two-pass algorithm for cone-beam reconstruction[C]. San Diego: Medical Imaging 2000 : Image Processing, 2000: 533-40.
[13]
HanC, BaekJ. Multi-pass approach to reduce cone-beam artifacts in a circular orbit cone-beam CT system[J]. Opt Express, 2019, 27(7): 10108-26.
[14]
HanY, KimJ, YeJC. Differentiated backprojection domain deep learning for conebeam artifact removal[J]. IEEE Trans Med Imaging, 2020, 39(11): 3571-82.
[15]
MinnemaJ, van EijnattenM, der SarkissianH, et al. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction[J]. Phys Med Biol, 2021, 66(13): 135015.
[16]
XiaWJ, ShanHM, WangG, et al. Physics-/ Model-Based and Data-Driven Methods for Low-Dose Computed Tomography: a survey[J]. IEEE Signal Process Mag, 2023, 40(2): 89-100.
[17]
HeJ, WangYB, MaJH. Radon inversion via deep learning[J]. IEEE Trans Med Imaging, 2020, 39(6): 2076-87.
[18]
HeJ, ChenSL, ZhangH, et al. Downsampled imaging geometric modeling for accurate CT reconstruction via deep learning[J]. IEEE Trans Med Imaging, 2021, 40(11): 2976-85.
[19]
WürflT, HoffmannM, ChristleinV, et al. Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems[J]. IEEE Trans Med Imag, 2018, 37(6): 1454-63.
[20]
HuDL, LiuJ, LvTL, et al. Hybrid-domain neural network processing for sparse-view CT reconstruction[J]. IEEE Trans Radiat Plasma Med Sci, 2021, 5(1): 88-98.
[21]
ZhangYK, HuDL, ZhaoQL, et al. CLEAR: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose CT imaging[J]. IEEE Trans Med Imag, 2021, 40(11): 3089-101.
[22]
YangQS, YanPK, ZhangYB, et al. Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss[J]. IEEE Trans Med Imaging, 2018, 37(6): 1348-57.
GuoMH, XuTX, LiuJJ, et al. Attention mechanisms in computer vision: a survey[J]. Comput Vis Medium, 2022, 8(3): 331-68.
[25]
MoenTR, ChenBY, HolmesDR 3rd, et al. Low-dose CT image and projection dataset[J]. Med Phys, 2021, 48(2): 902-11.
[26]
van AarleW, PalenstijnWJ, De BeenhouwerJ, et al. The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography[J]. Ultramicroscopy, 2015, 157: 35-47.
[27]
KingmaDP, BaJ. Adam: a method for stochastic optimization[EB/OL]. [2014-12-22].
[28]
JinKH, McCannMT, FrousteyE, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Trans Image Process, 2017, 26(9): 4509-22.
[29]
ParkerDL. Optimal short scan convolution reconstruction for fanbeam CT[J]. Med Phys, 1982, 9(2): 254-7.
[30]
LeeD, ChoiS, KimHJ. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains[J]. Med Phys, 2019, 46(1): 104-15.
[31]
ZhouB, ChenXC, ZhouSK, et al. DuDoDR-Net: dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography[J]. Med Image Anal, 2022, 75: 102289.
[32]
ChaoLY, WangZW, ZhangHB, et al. Sparse-view cone beam CT reconstruction using dual CNNs in projection domain and image domain[J]. Neurocomputing, 2022, 493(7): 536-47.
[33]
ChenDD, TachellaJ, DaviesME. Equivariant imaging: learning beyond the range space[C]. Montreal: 2021 IEEE/CVF International Conference on Computer Vision, 2021: 4359-68.
[34]
ChenDD, TachellaJ, DaviesME. Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements[C]. New Orleans, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5637-46.
[35]
PengSW, LiaoJY, LiDY, et al. Noise-conscious explicit weighting network for robust low-dose CT imaging[C]. San Diego: Medical Imaging 2023 : Physics of Medical Imaging, 2023: 711-8.
[36]
ChenJ, ZhangR, YuT, et al. Label-retrieval-augmented diffusion models for learning from noisy labels[J]. Adv Neural Inf Process Syst, 2024, 36. doi: 10.48550/arXiv.2305.19518