Objective To propose a CT truncated data reconstruction model (DDTrans) based on projection and image dual-domain Transformer coupled feature learning for reducing truncation artifacts and image structure distortion caused by insufficient field of view (FOV) in CT scanning. Methods Transformer was adopted to build projection domain and image domain restoration models, and the long-range dependency modeling capability of the Transformer attention module was used to capture global structural features to restore the projection data information and enhance the reconstructed images. We constructed a differentiable Radon back-projection operator layer between the projection domain and image domain networks to enable end-to-end training of DDTrans. Projection consistency loss was introduced to constrain the image forward-projection results to further improve the accuracy of image reconstruction. Results The experimental results with Mayo simulation data showed that for both partial truncation and interior scanning data, the proposed DDTrans method showed better performance than the comparison algorithms in removing truncation artifacts at the edges and restoring the external information of the FOV. Conclusion The DDTrans method can effectively remove CT truncation artifacts to ensure accurate reconstruction of the data within the FOV and achieve approximate reconstruction of data outside the FOV.
FanFX, KreherB, KeilH, et al. Fiducial marker recovery and detection from severely truncated data in navigation-assisted spine surgery[J]. Med Phys, 2022, 49(5): 2914-30. DOI: 10.1002/mp.15617
[3]
WangG, YuHY, De ManB. An outlook on X-ray CT research and development[J]. Med Phys, 2008, 35(3): 1051-64. DOI: 10.1118/1.2836950
[4]
KudoH, SuzukiT, RashedEA. Image reconstruction for sparse-view CT and interior CT-introduction to compressed sensing and differentiated backprojection[J]. Quant Imaging Med Surg, 2013, 3(3): 147-61. DOI: 10.3978/j.issn.2223-4292.2013.06.01
[5]
OhnesorgeB, FlohrT, SchwarzK, et al. Efficient correction for CT image artifacts caused by objects extending outside the scan field of view[J]. Med Phys, 2000, 27(1): 39-46. DOI: 10.1118/1.598855
[6]
HsiehJ, ChaoE, ThibaultJ, et al. A novel reconstruction algorithm to extend the CT scan field-of-view[J]. Med Phys, 2004, 31(9): 2385-91. DOI: 10.1118/1.1776673
[7]
SourbelleK, KachelriessM, KalenderWA. Reconstruction from truncated projections in CT using adaptive detruncation[J]. Eur Radiol, 2005, 15(5): 1008-14. DOI: 10.1007/s00330-004-2621-9
[8]
NooF, ClackdoyleR, PackJD. A two-step Hilbert transform method for 2D image reconstruction[J]. Phys Med Biol, 2004, 49(17): 3903-23. DOI: 10.1088/0031-9155/49/17/006
[9]
KudoH, CourdurierM, NooF, et al. Tiny a priori knowledge solves the interior problem in computed tomography[J]. Phys Med Biol, 2008, 53(9): 2207-31. DOI: 10.1088/0031-9155/53/9/001
[10]
CourdurierM, NooF, DefriseM, et al. Solving the interior problem of computed tomography using a priori knowledge[J]. Inverse Probl, 2008, 24(6): 065001. DOI: 10.1088/0266-5611/24/6/065001
[11]
CoussatA, RitS, ClackdoyleR, et al. Region-of-interest CT reconstruction using object extent and singular value decomposition[J]. IEEE Trans Radiat Plasma Med Sci, 2022, 6(5): 537-51. DOI: 10.1109/trpms.2021.3091288
[12]
XiaY, HofmannH, DennerleinF, et al. Towards clinical application of a Laplace operator-based region of interest reconstruction algorithm in C-arm CT[J]. IEEE Trans Med Imaging, 2014, 33(3): 593-606. DOI: 10.1109/tmi.2013.2291622
[13]
HanWM, YuHY, WangG. A general total variation minimization theorem for compressed sensing based interior tomography[J]. J Biomed Imag, 2009, 2009: 21. DOI: 10.1155/2009/125871
[14]
YangJS, YuHY, JiangM, et al. High-order total variation minimization for interior tomography[J]. Inverse Probl, 2010, 26(3): 035013. DOI: 10.1088/0266-5611/26/3/035013
[15]
YuHY, WangG. Compressed sensing based interior tomography[J]. Phys Med Biol, 2009, 54(9): 2791-805. DOI: 10.1088/0031-9155/54/9/014
[16]
HanY, YeJC. One network to solve all ROIs: deep learning CT for any ROI using differentiated backprojection[J]. Med Phys, 2019, 46(12): e855-e872. DOI: 10.1002/mp.13631
[17]
LiYS, LiK, ZhangCZ, et al. Learning to reconstruct computed tomography images directly from sinogram data under A variety of data acquisition conditions[J]. IEEE Trans Med Imaging, 2019, 38(10): 2469-81. DOI: 10.1109/tmi.2019.2910760
[18]
FourniéÉ, Baer-BeckM, StierstorferK. CT field of view extension using combined channels extension and deep learning methods[J]. arXiv preprint, arXiv:1908.09529, 2019,
[19]
HuangYX, PreuhsA, ManhartM, et al. Data extrapolation from learned prior images for truncation correction in computed tomography[J]. IEEE Trans Med Imaging, 2021, 40(11): 3042-53. DOI: 10.1109/tmi.2021.3072568
[20]
ShamshadF, KhanS, ZamirSW, et al. Transformers in medical imaging: a survey[J]. Med Image Anal, 2023, 88: 102802. DOI: 10.1016/j.media.2023.102802
[21]
GuoY, ChenJ, WangJD, et al. Closed-loop matters: dual regression networks for single image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19, 2020. Seattle, WA, USA. IEEE, 2020: 5047-16. DOI: 10.1109/cvpr42600.2020.00545
[22]
RonchettiM. TorchRadon: fast differentiable routines for computed tomography[J]. arXiv preprint arXiv:2009.14788, 2020
[23]
ZamirSW, AroraA, KhanS, et al. Restormer: efficient transformer for high-resolution image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022. New Orleans, LA, USA. IEEE, 2022: 5278-39. DOI: 10.1109/cvpr52688.2022.00564
[24]
AAPM. Low dose CT grand challenge[EB/OL]. 2017.
[25]
MoenTR, ChenBY, HolmesDR 3rd, et al. Low-dose CT image and projection dataset[J]. Med Phys, 2021, 48(2): 902-11. DOI: 10.1002/mp.14594
[26]
PaszkeA, GrossS, ChintalaS, et al. Automatic differentiation in PyTorch[C]. Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, USA, 2017.
[27]
CheungJP, ShugardE, MistryN, et al. Evaluating the impact of extended field-of-view CT reconstructions on CT values and dosimetric accuracy for radiation therapy[J]. Med Phys, 2019, 46(2): 892-901. DOI: 10.1002/mp.13299
[28]
FonsecaGP, Baer-BeckM, FournieE, et al. Evaluation of novel AI-based extended field-of-view CT reconstructions[J]. Med Phys, 2021, 48(7): 3583-94. DOI: 10.1002/mp.14937
[29]
WallaceN, SchafferNE, FreedmanBA, et al. Computer-assisted navigation in complex cervical spine surgery: tips and tricks[J]. J Spine Surg, 2020, 6(1): 136-44. DOI: 10.21037/jss.2019.11.13