基于两阶段分析的多尺度颈动脉斑块检测方法

肖慧, 方威扬, 林铭俊, 周振忠, 费洪文, 陈超敏

南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (02) : 387 -396.

PDF
南方医科大学学报 ›› 2024, Vol. 44 ›› Issue (02) : 387 -396.

基于两阶段分析的多尺度颈动脉斑块检测方法

作者信息 +

Author information +
文章历史 +
PDF

摘要

目的 实现从超声图像中准确检测出多种尺度大小的颈动脉斑块。方法 本文提出一种基于深度卷积神经网络的两阶段颈动脉斑块检测方法—SM-YOLO。依次运用中值滤波、直方图均衡化、Gamma变换等算法对数据集进行预处理,提高图像质量。模型的第1阶段基于YOLOX_l目标检测网络构建候选斑块集,添加多尺度图像训练和多尺度图像预测策略,以适应不同形状大小的颈动脉斑块。在第2阶段中,提取并融合方向梯度直方图特征(HOG)和局部二值模式特征(LBP),结合支持向量机分类器(SVM)对候选斑块集进行筛选得到最终的检测结果。将本文构建的模型与多个领先的目标检测模型(YOLOX_l、SSD、EfficientDet、YOLOV5_l、Faster R-CNN)进行定量和可视化结果对比。结果 SM-YOLO在测试集上的召回率为89.44%,精确率为90.96%,F1-Score为90.19%,AP为92.70%,各项性能指标和可视化效果均优于其他几种模型。同时其检测时间比Faster R-CNN模型少3倍,基本满足实时检测的要求。结论 本文的颈动脉斑块检测方法具有较好的性能,对于在超声图像中准确识别颈动脉斑块具有一定的临床应用价值。

关键词

深度学习 / YOLOX / 特征融合 / SVM / 颈动脉斑块

Key words

引用本文

引用格式 ▾
肖慧, 方威扬, 林铭俊, 周振忠, 费洪文, 陈超敏 基于两阶段分析的多尺度颈动脉斑块检测方法[J]. 南方医科大学学报, 2024, 44(02): 387-396 DOI:

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

10

访问

0

被引

详细

导航
相关文章

AI思维导图

/