改进RT-DETR的液晶面板喷墨打印表面缺陷检测

李昂, 刘竹丽, 宋伟, 王立新

重庆理工大学学报(自然科学版) ›› 2024, Vol. 38 ›› Issue (11) : 147 -154.

PDF
重庆理工大学学报(自然科学版) ›› 2024, Vol. 38 ›› Issue (11) : 147 -154. DOI: CNKI:SUN:CGGL.0.2024-11-018

改进RT-DETR的液晶面板喷墨打印表面缺陷检测

    李昂, 刘竹丽, 宋伟, 王立新
作者信息 +

Author information +
文章历史 +
PDF

摘要

液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主干网络ResNet模型替换为特征提取性能更优的ConvNeXt模型,提高算法整体检测精度。设计了基于通道注意力的增强通道压缩模块,使算法更有效地消除背景干扰专注于定位缺陷目标,加快算法收敛,提高小目标检测精度。在构建的喷墨打印缺陷数据集训练实验上,改进RT-DETR算法检测平均精度mAP(mean average precision)为80.58%,较原始RT-DETR算法提升了2.89%,较原始DETR算法提升了15.88%,检测速度达到20 FPS(frames per second),改进RT-DETR算法的综合检测性能更优。改进RT-DETR算法在小目标检测数据集VisDrone训练实验上表现出良好的通用性,为其他工业场景下的表面小目标缺陷检测提供了参考价值。

关键词

表面缺陷检测 / 目标检测 / RT-DETR算法 / ConvNeXt模型 / 通道注意力

Key words

引用本文

引用格式 ▾
改进RT-DETR的液晶面板喷墨打印表面缺陷检测[J]. 重庆理工大学学报(自然科学版), 2024, 38(11): 147-154 DOI:CNKI:SUN:CGGL.0.2024-11-018

登录浏览全文

4963

注册一个新账户 忘记密码

参考文献

AI Summary AI Mindmap
PDF

88

访问

0

被引

详细

导航
相关文章

AI思维导图

/