基于1D-CNN的齿轮3D振动信号故障诊断方法
蒋丽英 , 刘桂金 , 崔建国 , 杜文友 , 于明月
沈阳航空航天大学学报 ›› 2023, Vol. 40 ›› Issue (4) : 25 -31.
基于1D-CNN的齿轮3D振动信号故障诊断方法
Fault diagnosis method for gear 3D vibration signal based on 1D-CNN
为了解决从齿轮一维振动信号提取故障特征不全面的问题,提出一种基于一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)的齿轮3D振动信号故障诊断新方法。首先,提取原始三维振动信号各维的时域特征;其次,利用一维卷积神经网络(1D-CNN)模型进行特征选择;最后,将选择后的特征进行重组,重组特征作为1D-CNN故障诊断模型的输入实现故障分类操作。结果表明,利用提出的故障诊断方法,诊断准确率显著提高。模型的结构简单,训练速度快,能够快速实现故障诊断。
In order to solve the problem of incomplete fault feature extraction from gear one-dimensional vibration signal,a new fault diagnosis method of gear 3D vibration signal based on one-dimensional convolution neural network was proposed.Firstly,the time domain features of each dimension of the original three-dimensional vibration signal were extracted;Secondly,the one-dimensional convolutional neural network model was used for feature selection;Finally,the selected features were reorganized,and the reorganized features were used as the input of 1D-CNN fault diagnosis model to achieve fault classification operation.The results show that the accuracy of diagnosis is remarkably improved by using the proposed fault diagnosis method.Moreover,the structure of the model is simple,the training speed is fast,and the fault diagnosis can be achieved quickly.
三维振动信号 / 时域特征 / 一维卷积神经网络 / 故障诊断 / 齿轮
three-dimensional vibration signal / time domain features / one-dimensional convolutional neural network / fault diagnosis / gear
| [1] |
蒋丽英, 潘宗博, 刘佳鑫. 基于改进VMD-SVD降噪的齿轮箱故障特征提取[J]. 组合机床与自动化加工技术,2021(3):4-8. |
| [2] |
曲建岭,余路,袁涛,基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018,39(7):134-143. |
| [3] |
龙英,何怡刚,张镇,基于信息熵和Haar小波变换的开关电流电路故障诊断新方法[J].仪器仪表学报,2015,36(3):701-711. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
吴春志,江鹏程,冯辅周,基于一维卷积神经网络的齿轮箱故障诊断[J].振动与冲击,2018,37(22):51-56. |
| [10] |
王霄,谢平,郭源耕,基于多字典-共振稀疏分解的脉冲故障特征提取[J].中国机械工程,2019,30(20):2456-2462,2472. |
| [11] |
宗泽旭. 电气设备中的高频信号时域特征快速分析方法[D].武汉:华中科技大学,2018. |
| [12] |
王婷婷,潘祥.基于卷积神经网络的目标检测算法研究[J].长春师范大学学报,2020,39(6):42-48. |
| [13] |
郑一珍,牛蔺楷,熊晓燕,基于一维卷积神经网络的圆柱滚子轴承保持架故障诊断[J].振动与冲击,2021,40(19):230-238,285. |
| [14] |
崔石玉,朱志宇.基于参数迁移和一维卷积神经网络的海水泵故障诊断[J].振动与冲击,2021,40(24):180-189. |
| [15] |
马海辉,余小玲,吕倩,一维卷积神经网络在往复式压缩机气阀故障诊断中的应用[J].西安交通大学学报,2022,56(4):1-9. |
| [16] |
潘屹豪,肖红,周玉彬,基于改进一维卷积神经网络的多轴工业机器人故障诊断[J].组合机床与自动化加工技术,2021,10(12):10-14,18. |
国家自然科学基金(61903262)
辽宁省教育厅项目(JYT2020021)
/
| 〈 |
|
〉 |