基于改进图优化的惯性/卫星/视觉组合导航方法
Inertial/satellite/vision integrated navigation method based on improved graph optimization
惯性/卫星/视觉组合导航在城市复杂环境下可以获得较高精度的连续定位信息,因此应用越来越广泛。但外界环境变化引起的传感器误差会导致组合导航精度下降,甚至造成组合导航结果发散。针对低成本惯性/卫星/视觉组合导航过程中因环境因素产生的传感器误差问题,提出基于改进图优化算法的惯性/卫星/视觉组合导航算法。在传统图优化算法的基础上,在代价函数中引入鲁棒核函数对环境引起的传感器误差进行过滤,并且在惯性测量单元(inertial measurement unit,IMU)预积分中加入地球自转加速度补偿来提高预积分精度,进而提高组合导航精度。最后基于kaist城市行驶数据集设计了对比实验,验证结果表明,提出的改进图优化方法可以有效过滤因外界环境因素产生的传感器误差,相比于传统的图优化方法导航精度提升了7%。
Inertial/satellite/visual integrated navigation can obtain highly accurate continuous positioning information in complex urban environments, and therefore has become increasingly widely used. However, sensor gross errors caused by changes in the external environment can lead to a decrease in the accuracy of integrated navigation, and even cause divergence in the results of integrated navigation. In response to the problem of sensor gross errors caused by environmental factors in the low-cost inertial/satellite/visual integrated navigation process, an inertial/satellite/visual integrated navigation algorithm based on an improved graph optimization algorithm was proposed. A robust kernel function was introduced to the cost function based on the traditional graph optimization algorithm to filter the sensor gross errors caused by environmental factors, and earth rotation acceleration compensation to the IMU (inertial measurement unit) pre-integration was added to improve the accuracy of pre-integration, thus, the accuracy of integrated navigation was improved. Finally, a comparative experiment was designed based on the kaist urban driving dataset, and the results show that the improved graph optimization method proposed can effectively filter sensor gross errors caused by external environmental factors, and the navigation accuracy improves by 7% compared to the traditional graph optimization method.
组合导航 / 图优化算法 / 传感器误差 / 代价函数 / 鲁棒核函数
integrated navigation / graph optimization algorithm / sensor gross errors / cost function / robust kernel function
| [1] |
蒋郡祥.基于图优化的视觉/惯性/GNSS融合导航方法研究[D].武汉:武汉大学,2021. |
| [2] |
方文轩,丛佃伟.卫星/惯性/视觉组合导航多源融合技术现状及发展[J].无线电工程,2022,52(10):1813-1820. |
| [3] |
杨显赐,乔书波,肖国锐,基于精化预积分的因子图GNSS/INS松组合定位[J].测绘工程,2023,32(6):29-37. |
| [4] |
蒋锐,李俊,徐友云,基于联邦卡尔曼滤波器的容错GPS-AOA-SINS组合导航算法[J].通信学报,2022,43(8):78-89. |
| [5] |
胡晓强,武东杰,彭侠夫.INS/GNSS/VO组合导航系统复合型异常检测与容错算法[J].中国惯性技术学报,2023,31(2):148-156. |
| [6] |
赵壮,马国梁.自适应滤波协同图优化导航方法研究[J].仪器仪表学报,2023,44(7):271-281. |
| [7] |
宋江波,姚荷雄,李婉清,卫惯视组合导航技术发展趋势[J].导航定位学报,2023,11(2):36-48. |
| [8] |
|
| [9] |
韩勇强,于潇颖,纪泽源,面向城市复杂环境的GNSS/INS高精度图优化算法[J].中国惯性技术学报,2022,30(5):582-588. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
张小红,张元泰,朱锋.城市复杂场景下GNSS定位的因子图优化方法及其抗差性能分析[J].武汉大学学报(信息科学版),2023,48(7):1050-1057. |
| [15] |
徐晓苏,吴贤.基于IMU预积分封闭解的单目视觉惯性里程计算法[J].中国惯性技术学报,2020,28(4):440-447. |
| [16] |
|
国家重点研发计划项目(2022YFC2903800)
/
| 〈 |
|
〉 |