PDF (1179K)
摘要
对学习者的知识掌握水平进行追踪是智慧教育的重要研究方向之一。传统深度知识追踪方法的关注点主要集中在循环神经网络上,但存在缺乏可解释性、长序列依赖等问题。同时,很多方法没有考虑学习者特征信息及习题特征对实验结果的影响。针对以上问题,提出了一种融合习题特征信息的交叉注意力机制知识追踪模型。该模型结合知识点和习题特征信息得到习题特征嵌入模块,再根据学习者回答情况对注意力机制进行改进,得到双注意力机制模块。考虑到学习者实际做题情况,引入基于注意力机制的猜想失误模块。首先,将习题特征信息输入到该模型中,通过习题特征嵌入模块得到融合习题特征信息的学习者反应;然后,经过猜想失误模块的处理,可以得到学习者的真实反应;最后,通过预测模块得出学习者下一次回答正确的概率。实验结果表明,融合习题特征信息的交叉注意力机制知识追踪模型相对于传统深度知识追踪(deep knowledge tracing,DKT)模型,接收者操作-曲线下面积(area under curve of the receiver operating characteristic,ROC-AUC)和预测准确率(accuracy,ACC)分别提高了3.13%和3.44%,能够很好地处理长序列依赖情况,并具有更好的可解释性和预测性能。
关键词
智慧教育
/
知识追踪
/
交叉注意力机制
/
循环神经网络
/
习题特征信息
Key words
wisdom education
/
knowledge tracing
/
cross-attention mechanism
/
recurrent neural network
/
exercise feature information
[Author(id=1159908083515449828, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, orderNo=0, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=zhangyifei@sau.edu.cn, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1159908083767108070, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, authorId=1159908083515449828, language=EN, stringName=Yifei ZHANG, firstName=Yifei, middleName=null, lastName=ZHANG, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1159908084220092903, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, authorId=1159908083515449828, language=CN, stringName=张翼飞, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=沈阳航空航天大学 计算机学院,沈阳 110136, bio={"content":"张翼飞(1976-),男,吉林白山人,教授,博士,主要研究方向:教育大数据、智慧教育技术,E-mail:zhangyifei@sau.edu.cn。
"}, bioImg=null, bioContent=张翼飞(1976-),男,吉林白山人,教授,博士,主要研究方向:教育大数据、智慧教育技术,E-mail:zhangyifei@sau.edu.cn。
, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1159908083351871968, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, xref=null, ext=[AuthorCompanyExt(id=1159908083381232097, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, companyId=1159908083351871968, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China), AuthorCompanyExt(id=1159908083414786530, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, companyId=1159908083351871968, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=沈阳航空航天大学 计算机学院,沈阳 110136)])]), Author(id=1159908084316561898, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, orderNo=1, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1159908084601774572, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, authorId=1159908084316561898, language=EN, stringName=Kaijun GUAN, firstName=Kaijun, middleName=null, lastName=GUAN, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1159908084702437869, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, authorId=1159908084316561898, language=CN, stringName=关凯俊, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=沈阳航空航天大学 计算机学院,沈阳 110136, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1159908083351871968, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, xref=null, ext=[AuthorCompanyExt(id=1159908083381232097, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, companyId=1159908083351871968, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China), AuthorCompanyExt(id=1159908083414786530, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, companyId=1159908083351871968, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=沈阳航空航天大学 计算机学院,沈阳 110136)])]), Author(id=1159908085000233455, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, orderNo=2, firstName=null, middleName=null, lastName=null, nameCn=null, orcid=null, stid=null, country=null, authorPic=null, dead=0, email=null, emailSecond=null, emailThird=null, correspondingAuthor=0, authorType=1, ext={EN=AuthorExt(id=1159908085478384114, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, authorId=1159908085000233455, language=EN, stringName=Jiajin ZHANG, firstName=Jiajin, middleName=null, lastName=ZHANG, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null), CN=AuthorExt(id=1159908085579047411, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, authorId=1159908085000233455, language=CN, stringName=张加金, firstName=null, middleName=null, lastName=null, prefix=null, suffix=null, authorComment=null, nameInitials=null, affiliation=null, department=null, xref=null, address=沈阳航空航天大学 计算机学院,沈阳 110136, bio=null, bioImg=null, bioContent=null, aboutCorrespAuthor=null)}, companyList=[AuthorCompany(id=1159908083351871968, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, xref=null, ext=[AuthorCompanyExt(id=1159908083381232097, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, companyId=1159908083351871968, language=EN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=College of Computer Science,Shenyang Aerospace University,Shenyang 110136,China), AuthorCompanyExt(id=1159908083414786530, tenantId=1045748351789510663, journalId=1155139928303341632, articleId=1159908023260078497, companyId=1159908083351871968, language=CN, country=null, province=null, city=null, postcode=null, companyName=null, departmentName=null, remark=沈阳航空航天大学 计算机学院,沈阳 110136)])])]
张翼飞,关凯俊,张加金.
融合习题特征信息的交叉注意力机制知识追踪模型[J].
沈阳航空航天大学学报, 2024, 41(2): 47-56 DOI:10.3969/j.issn.2095-1248.2024.02.006