基于蚁群优化算法的无人直升机三维航迹规划
Three-dimensional flight path planning of unmanned autonomous helicopter based on ant colony optimization algorithm
以校园巡视无人直升机(unmanned autonomous helicopter,UAH)为例,针对无人直升机低空飞行过程中三维航迹规划的问题,提出了一种基于蚁群优化(ant colony optimization,ACO)算法的三维多层次航迹规划算法。首先,根据环境和UAH自身性能特点的约束条件对校园环境进行三维栅格建模,并对静态障碍物的分布情况进行高度分层,分层建立二维栅格地图。然后,采用改进信息素更新机制的ACO算法进行二维航迹规划。当无人直升机前方遇到静态或动态障碍物时,利用其垂直起降的特点实现高度层的变换。在新的高度层中再利用蚁群优化算法重新规划航迹,最终实现无人直升机低空飞行任务的三维航迹规划。仿真实验结果表明,改进信息素更新机制的ACO三维航迹规划算法能较好地实现无人直升机在低空飞行时的三维航迹规划。
Taking the unmanned autonomous helicopter (UAH) for campus patrol as an example,ai-ming at the problem of three-dimensional flight path planning during the low-altitude flight of UAH,a three-dimensional multilevel flight path planning algorithm based on ant colony optimization (ACO) algorithm was proposed.Firstly,according to the constraint conditions of the environment and the performance characteristics of UAH,the campus environment was modeled as a three-dimensional raster model,and the distribution of static obstacles was highly stratified to build a two-dimensional raster map.Then,two-dimensional flight path planning was carried out based on the ant colony optimization algorithm with improved pheromone updating mechanism.When the unmanned autonomous helicopter encountered static or dynamic obstacles in front of it,its vertical take-off and landing characteristics were utilized to realize the transformation of the altitude layer. In the new altitude layer,the ant colony optimization algorithm was used to replan the flight path,and finally the three-dimensional flight path planning of the unmanned autonomous helicopter's low-altitude flight task was realized.The simulation results show that the ACO algorithm with improved pheromone updating mechanism can realize the 3D flight path planning of unmanned autonomous helicopter at low altitude better.
无人直升机 / 蚁群优化 / 三维栅格 / 航迹规划 / 高度层
unmanned autonomous helicopter / ant colony optimization / three-dimensional raster / flight path planning / altitude layer
| [1] |
蒙志君,平学寿,陈旭智.无人直升机三维避障方法及仿真[J].北京航空航天大学学报,2016,42(8):1619-1626. |
| [2] |
|
| [3] |
路晶,史宇,张书畅,无人机航迹规划算法综述[J].航空计算技术,2022,52(4):131-134. |
| [4] |
|
| [5] |
李廷珍,招启军,张夏阳,基于改进人工势场法的无人直升机三维航迹规划[J].飞行力学,2022,40(1):69-75 |
| [6] |
马梓元,龚华军,王新华.基于改进人工鱼群算法的无人直升机编队航迹规划[J].北京航空航天大学学报,2021,47(2):406-413. |
| [7] |
|
| [8] |
翟志波,戴玉森,周鹏鹏,基于改进蚁群算法的移动机器人路径规划[J].组合机床与自动化加工技术,2023,12(4):5-9. |
| [9] |
王宏健,鄂鑫,张凯,改进蚁群算法解决UUV集群任务规划问题[J].仪器仪表学报,2022,43(9):238-254. |
| [10] |
谭建豪,马小萍,李希.无人机3D航迹规划及动态避障算法研究[J].仪器仪表学报,2019,40(12):224-233. |
| [11] |
沈春林,徐克虎,贺也平.低空突防中的若干关键技术[J].南京航空航天大学学报,2000,32(3):335-342. |
| [12] |
冷珊珊.3D复杂环境下的无人机航迹规划与任务分配方法研究[D].南京:东南大学,2022. |
| [13] |
邱晓磊.基于蚁群算法的网球机器人路径规划算法研究[J].太原学院学报(自然科学版),2022,40(4):72-78. |
| [14] |
吴帅,魏文红,张宇辉,基于改进蚁群算法的移动机器人路径规划[J].东莞理工学院学报,2023,30(1):24-34. |
| [15] |
|
| [16] |
江明,王飞,葛愿,基于改进蚁群算法的移动机器人路径规划研究[J].仪器仪表学报,2019,40(2):113-121. |
| [17] |
|
| [18] |
沈智鹏,丁文娜,刘雨宸,基于改进自适应蚁群算法的无人帆船路径规划[J].哈尔滨工程大学学报,2023,44(6):969-976. |
国家重点研发计划项目(2022YFC2903805)
辽宁省教育厅重点攻关项目(LJKZZ20220030)
/
| 〈 |
|
〉 |