基于循环神经网络的卫星导航系统的欺骗干扰检测算法
曲萍萍 , 刘天峰 , 王尔申 , 苑子泊 , 杨健 , 刘达 , 石伟 , 段婉莹
沈阳航空航天大学学报 ›› 2025, Vol. 42 ›› Issue (3) : 75 -81.
基于循环神经网络的卫星导航系统的欺骗干扰检测算法
Satellite navigation system spoofing interference detection algorithm based on RNN
为了提高卫星导航系统的欺骗干扰检测能力,提出一种基于循环神经网络(recurrent neural network,RNN)的卫星导航系统欺骗干扰检测算法,并设计了损失函数。为了提高数据预测准确率,研究了数据预处理方法,将数据映射在固定区间,放大了数据的特性。实验结果表明,循环神经网络模型对10颗卫星信噪比的预测准确率全部高于Transformer模型,循环神经网络模型对信噪比数据预测的平均准确率为64.76%,而Transformer模型仅为3%。在循环神经网络预测模型中,针对10颗卫星信噪比的预测有7颗的准确率都在60%以上。由此可以看出,在处理时序数据类型的北斗卫星导航信号信噪比数据时,循环神经网络模型具有更好的预测效果。因此,循环神经网络模型可以针对北斗信噪比实现0.08dB误差的预测,当未来信噪比值与预测值的差大于0.08dB时,认为此时的信号为欺骗信号,从而实现欺骗干扰检测。该研究成果为卫星导航欺骗算法的研究提供了一定的参考价值。
In order to improve the spoofing interference detection capability of satellite navigation system, a satellite navigation spoofing interference detection algorithm based on RNN was investigated, and the loss function was designed. In order to improve the accuracy of data prediction, a data preprocessing method was studied, which maped the data in a fixed interval and amplifies the characteristics of the data. The experimental results show that the prediction accuracy of the RNN model for the signal-to-noise ratio of ten satellites is higher than that of the Transformer model. The recurrent neural network model has an average accuracy of 64.76% in predicting the signal-to-noise ratio data, while the Transformer model has only 3%. In the RNN prediction model, the accuracy of the prediction for 7 out of 10 satellites signal-to-noise ratios is above 60%. It can be seen that the RNN model has a better prediction effect when facing the signal-to-noise ratio data of BeiDou satellite navigation signals with the time series data type. Therefore, the RNN model can realize the prediction of 0.08dB error for BeiDou signal-to-noise ratio, and when the difference between the future signal-to-noise ratio value and the predicted value is greater than 0.08 dB, it is considered that the signal is a spoofing signal at this time, so as to realize spoofing interference detection. The research results provide certain reference value for the research of satellite navigation spoofing algorithm.
卫星导航系统 / 深度学习 / 欺骗干扰检测 / 信噪比 / 循环神经网络
satellite navigation system / deep learning / spoofing interference detection / signal-to-noise ratio / recurrent neural network
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
肖嘉民.基于TESLA的导航电文认证[D].武汉:华中科技大学,2021. |
| [6] |
张云.基于TESLA的北斗三代民用信号导航电文认证方法[D].天津:中国民航大学,2021. |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
蒋雪琳.基于Transformer模型的多元时间序列填补和预测研究[D].西安:西安理工大学,2023. |
| [12] |
王尔申,孙薪蕙,曲萍萍, |
| [13] |
王尔申,杨福霞,贾超颖, |
| [14] |
程雪峰,董明刚.基于RNN信息累积的动态多目标优化算法[J].计算机科学,2024,51(8):333-344. |
| [15] |
王尔申,张宏轩,徐嵩, |
| [16] |
李华旭.基于RNN和Transformer模型的自然语言处理研究综述[J].信息记录材料,2021,22(12):7-10. |
| [17] |
曾国治,魏子清,岳宝, |
| [18] |
苏智韬.基于改进RNN的LSTM软件缺陷预测技术的研究[J].现代信息科技,2020,4(21):17-19,23. |
国家自然科学基金(62173237)
极限环境光电动态测试技术与仪器全国重点实验室开放基金(2023-SYSJJ-04)
中国民航大学民航飞行广域监视与安全控制技术重点实验室开放基金(202105)
中国民航飞行技术与飞行安全重点实验室开放基金(FZ2021KF15)
中国民航飞行技术与飞行安全重点实验室开放基金(FZ2021ZZ06)
/
| 〈 |
|
〉 |