高海拔地区导叶开角对混流式水轮机效能影响初探
Study on the Influence of guide vane opening Angle on the efficiency of Francis turbine at high altitude
为了探究高海拔地区混流式水轮机在不同工况下的对厂房建筑的影响情况,对海拔2 968 m的某混流式水轮机试验模型选取多个工况点进行试验,通过原型观测分析不同工况下水轮机的实际运行中对厂房建筑所造成的影响。试验结果表明:当水轮机的导叶开角处于6°~12°时,由于整体压力及转轮流速变化不均,从而使尾水管产生了严重的偏心涡带,整个厂房建筑可以感到明显的振感,尤其是在试验台上的振感更为明显,并且可以清晰地听到明显的噪声。当导叶开角为12°~32°时,在此区间内,整体压力及流速变化较为均匀,水轮机组的运转过程也比较平稳,没有明显的振感和噪声。当导叶开角达到32°以上时,压力的整体变化比较平稳,只是在出口处突然发生紊乱,此时机组运转声音发生明显的改变,整个厂房的振感较前阶段有明显增强。
In order to explore the impact of mixed-flow turbines on plant buildings under different working conditions in high-altitude areas, multiple working conditions of mixed-flow turbines at an altitude of 2968m were selected for testing, and the impact of the actual operation of the turbines under different working conditions on the factory building was analyzed, and the causes of various types of effects were explored through FLUENT simulation. The results show that when the open angle of the guide vane of the turbine is at 6°~12°, due to the uneven change of the overall pressure and rotational flow rate, the tail pipe produces a serious eccentric vortex belt, and the entire plant building can feel the obvious vibration, especially on the test bench, the vibration is more obvious, and the obvious noise can be clearly heard. When the opening angle of the guide vane is 12°~32°, in this range, the overall pressure and flow rate change is more uniform, and the operation process of the water turbine unit is relatively stable, without obvious vibration and noise. When the opening angle of the guide leaf reaches more than32°, the overall change of pressure is relatively stable, but the disorder suddenly occurs at the outlet, and the sound of the unit operation changes significantly at this time, and the vibration of the whole plant is significantly enhanced compared with the previous stage.
mixed-flow turbine / guide vane opening / 2 968 m / efficiency
| [1] |
马震岳,董毓新.水轮发电机组动力学[M],大连:大连理工大学出版社,2003. |
| [2] |
|
| [3] |
陈婧,马震岳,刘志明 |
| [4] |
钟苏.影响混流式水轮机顶盖刚度的主要因素分析[J].大电机技术,1995(03):36-40. |
| [5] |
王粉玲.大型抽水蓄能电站地下厂房结构振动特性分析[D].大连理工大学,2013. |
| [6] |
邵万鹏,周一鸣,王玉昌.大型水电机组组合部件刚强度分析研究[J].机械强度,1993,(04):33-36. |
| [7] |
王桂平,肖明.周宁水电站地下厂房结构振动与结构形式研究[J].长江科学院院报,2004,21,(1):36-39. |
| [8] |
钱瑭,曹春建,胡雄峰.西藏地区某水电站水轮机主要参数选择及模型验收试验[J].中国农村水利水电,2018(12):193-197. |
| [9] |
李修树.西藏地区水轮机选型设计的几个主要问题探讨[J].水力发电,2011,37(04):82-84. |
| [10] |
林玲,周泽民.西藏纳金水电站机组水轮机技术改造[J].红水河,2013,32(04):58-60. |
| [11] |
何峰,胡定辉,何志锋 |
| [12] |
管德灵.西藏高原水轮机空蚀问题的探讨[J].水利水电科技进展,1996(03):58-61. |
| [13] |
刘峻岭,西藏地区水轮机允许吸出高度的计算问题[J].水利水电技术,1983(05):24-27. |
| [14] |
蔡显赫,高原自然环境对水轮机运行的影响[J].河南科技,2017(23):64-65. |
| [15] |
卫魏,罗红英,佘权威 |
西藏农牧学院第八届研究生教育创新计划资助项目(YJS2022-22)
/
| 〈 |
|
〉 |