PDF
摘要
由于深度学习对数据内在特征的敏感性,将深度学习算法应用于硬件加密芯片的侧信道分析,提高了侧信道分析的效率和准确率.但深度神经网络学习算法依旧是非线性结构未知的深层黑盒模型,模型结构和性能不一定是最优.该文提出一种基于树突网络的侧信道分析方法,由于树突网络内部非线性结构的可解释性,其系统辨识能力和运算复杂度均优于深度学习网络.在ChipWhisperer侧信道分析实验平台的CW308T-STM32F3和ATXMEGA128D4目标板上,针对AES-128加密算法进行侧信道分析实验,实验结果表明,基于树突网络的侧信道分析在模型参数规模、攻击精度、训练时间等方面都要优于多层感知机、卷积神经网络、循环神经网络等深度学习模型.
关键词
侧信道攻击
/
树突网络
/
深度学习
/
高级加密标准
Key words
基于树突网络的侧信道攻击[J].
湘潭大学学报(自然科学版), 2021, 43(02): 16-30 DOI:10.13715/j.cnki.nsjxu.2021.02.007