内置苯基桥接开关对多孔芳香骨架材料油水分离性能的强化
马硕 , 陈士欣 , 夏春龙 , 周鸿飞 , 李丛 , 白伟桦 , 崔博 , 郑桂月 , 布乃顺 , 何哲
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (09) : 162 -170.
内置苯基桥接开关对多孔芳香骨架材料油水分离性能的强化
Built-in Phenyl Bridging Switch Enhances the Oil-water Separation Performance of Porous Aromatic Framework Material
超疏水多孔芳香骨架材料能有效实现油水分离, 在石油污水处理方面具有良好应用前景, 其微腔强大的毛细管作用被证实是有效容器, 但相对较小的孔道空间导致其吸附能力有限. 本文通过在咔唑基多孔芳香骨架中引入额外的苯基片段作为桥接开关(π-π交联桥), 制备了超疏水多孔芳香骨架材料(LNU-42), 从而增大了材料的孔径. 结果表明, 与未引入苯基桥开关的咔唑基超疏水多孔芳香骨架材料(LNU-40)相比, 内置苯基桥接开关使LNU-42的孔径扩大了6~8倍, 显著增加了对有机溶剂的容纳空间, 负载LNU-42后的织物对氯苯吸附量达到自身重量的7.8倍, 吸附性能提高了66%, 对氯苯、 四氯化碳等有机溶剂的分离效率超过90%. 值得注意的是, 在强酸/碱性(1 mol/L)和高盐浓度(1 mol/L)等较严苛环境条件下, LNU-42仍能保持较强的疏水性. 本研究为制备具有高效油水分离性能的超疏水材料提供了适宜的技术路径, 并为处理石油污水提供了科技支撑.
Superhydrophobic porous aromatic framework materials have demonstrated remarkable potential in efficiently achieving oil-water separation, thereby holding great promise for their application in treating oilfield wastewater. The robust capillary action within their microcavities has been verified to serve as an effective containment mechanism. Nevertheless, the relatively constricted pore space poses a limitation on their adsorption capacity. In this work, by ingeniously incorporating additional phenyl fragments as bridging switches(π-π cross-linking bridges) into the carbazole-based porous aromatic framework, we synthesized a novel superhydrophobic porous aromatic material, denoted as LNU-42, and significantly enlarged its pore size. Experimental results reveal that, in contrast to the carbazole-based superhydrophobic porous aromatic material LNU-40, which lacks the phenyl-bridge switches, the introduction of these built-in phenyl-bridging switches has led to a 6—8-fold expansion in the pore size of LNU-42. This substantial increase has notably augmented the accommodation space for organic solvents. Specifically, the fabric impregnated with LNU-42 exhibits an outstanding adsorption capacity for chlorobenzene, reaching up to 7.8 times its own weight, representing a 66% enhancement in adsorption performance. Moreover, the separation efficiency of LNU-42 for organic solvents such as chlorobenzene and carbon tetrachloride surpasses 90%. Notably, LNU-42 demonstrates remarkable stability, maintaining its strong hydrophobicity even under extremely harsh environmental conditions, including strong acid/alkali(1 mol/L) and high-salt concentration(1 mol/L). This study not only furnishes a viable technical approach for the fabrication of superhydrophobic materials with high-efficiency oil-water separation capabilities but also offers crucial scientific and technological underpinnings for the treatment of oilfield wastewater.
超疏水多孔芳香骨架材料 / 内置苯基桥接开关 / Suzuki反应 / 油水分离性能
Superhydrophobic porous aromatic framework material / Built-in phenyl bridging switch / Suzuki reaction / Oil-water separation performance
| [1] |
Huynh B. Q., Kwong L. H., Kiang M. V., Chin E. T., Mohareb A. M., Jumaan A. O., Basu S., Geldsetzer P., Karaki F. M., Rehkopf D. H., Nat. Sustain., 2021, 4(12), 1084—1091 |
| [2] |
Goldstein B. D., Osofsky H. J., Lichtveld M. Y., N. Engl. J. Med., 2011, 364(14), 1334—1348 |
| [3] |
Chen J. H., Zhang W. P., Wan Z., Li S. F., Huang T. C., Fei Y. J., J. Clean. Prod., 2019, 227, 20—32 |
| [4] |
Liu Y., Li T., Wang Y., Dong W. F., Chem. J. Chinese Universities, 2019, 40(8), 1775—1783 |
| [5] |
刘耘, 李婷, 汪洋, 东为富. 高等学校化学学报, 2019, 40(8), 1775—1783 |
| [6] |
Song J. L., Lu Y., Luo J., Huang S., Wang L., Xu W. J., Parkin I. P., Adv. Mater. Interfaces, 2015, 2(15), 1500350 |
| [7] |
Prartono T., Dwinovantyo A., Syafrizal S., Syakti A. D., Microorganisms, 2022, 10(8), 1616 |
| [8] |
Tan J. Y., Low S. Y., Ban Z. H., Siwayanan P., Bioresources, 2021, 16(4), 8394—8416 |
| [9] |
Wang Y. H., Yan J. M., Wang J. G., Zhang X. M., Wei L. Q., Du Y. C., Yu B., Ye S. F., Chemosphere, 2020, 260, 127583 |
| [10] |
Alammar A., Park S. H., Williams C. J., Derby B., Szekely G., J. Membr. Sci., 2020, 603, 118007 |
| [11] |
Peng S., Ji X. Y., Dong H. H., Guo Z. R., Ma H. B., Han R. M., Pang K. Y. J., Chen X. X., Wang X. L., Colloid Surf. A: Physicochem. Eng. Asp. 2024, 692, 133996 |
| [12] |
Hoang A. T., Nižetić S., Duong X. Q., Rowinski L., Nguyen X. P., Chemosphere, 2021, 277, 130274 |
| [13] |
Cousins K., Zhang R. W., Polymers, 2019, 11(4), 690 |
| [14] |
You B. X., Tian Y. Y., Wang B. L., Zhu G. S., J. Colloid Interface Sci., 2022, 628, 1023—1032 |
| [15] |
Xu M. W., Yang S. X., Liu G. L., Wang S. Z., Wang C. M., Li J. Q., Li X., Zhang Y. F., Zhang M. M., He X. J., Xu H., Chem. J. Chinese Universities, 2025, 46(4), 20240506 |
| [16] |
徐明伟, 杨尚学, 刘冠林, 汪少振, 王存民, 李佳琪, 李湘, 张一帆, 张明明, 何新建, 徐欢. 高等学校化学学报, 2025, 46(4), 20240506 |
| [17] |
Yan Z. J., Qiao Y. M., Sun Q. Q., Cui B, Feng B., Bu N. S., Chu K, Ruan X. H., Yuan Y, Yang Y. J., Xia L. X., Molecules, 2022, 27(18), 6113 |
| [18] |
Hao Q., Tao Y., Ding X. S., Yang Y. J., Feng J., Wang R. L., Chen X. M., Chen G. L., Li X. M., Ouyang H., Hu X. L., Tian J., Han B. H., Zhu G. S., Wang W., Zhang F., Tan B., Li Z. T., Wang D., Wan L. J., Sci. China: Chem. 2023, 66(3), 620—682 |
| [19] |
Tian Y. Y., Zhu G. S., Chem. Rev., 2020, 120(16), 8934—8986 |
| [20] |
Zhao T. Y., Li X. L., Wang F. Z., Ren H., Sun F. X., Inorg. Chem. Commun., 2023, 158, 111657 |
| [21] |
Gao C. Y., Xiang T. T., Chen S. X., Sun Q. Q., Wang J. L., Zheng G. Y., Zhao Z. Y., Liu Z. Y., Cui B., Yan Z. J., Bu N. S., Wu Y., Chem. J. Chinese Universities, 2024, 45(5), 20240061 |
| [22] |
高昌源, 向婷婷, 陈士欣, 孙琪琪, 王佳乐, 郑桂月, 赵子谊, 刘子煜, 崔博, 闫卓君, 布乃顺, 武悦. 高等学校化学学报, 2024, 45(5), 20240061 |
| [23] |
An L. C., Han J. F., Zhang Y. H., Bu X. H., Chin. J. Appl. Chem., 2018, 35(9), 1019—1025 |
| [24] |
安连财, 韩久放, 章应辉, 卜显和. 应用化学, 2018, 35(9), 1019—1025 |
| [25] |
Li Z. N., Sha H. Y., Yang N., Yuan Y., Zhu G. S., Acta Chim. Sin., 2019, 77(5), 469—474 |
| [26] |
李樟楠, 沙浩岩, 杨南, 元野, 朱广山. 化学学报, 2019, 77(5), 469—474 |
| [27] |
Yuan Y., Yan Z. J., Ren H., Liu Q. Y., Zhu G. S., Sun F. X., Acta Chim. Sin., 2012, 70(13), 1446—1450 |
| [28] |
元野, 闫卓君, 任浩, 刘青英, 朱广山, 孙福兴. 化学学报. 2012, 70(13), 1446—1450 |
| [29] |
Jing B. Y., Lei T. Y., Wang J. J., Xu L., Liu J., Sun H., Gao S., Miao F. J., Zang Y., Micropor. Mesopor. Mat., 2022, 339, 111990 |
| [30] |
Xie Y., Liu M., Du H. L., Gui B., Sun J. L., Wang C., Sci. China: Chem., 2022, 65(11), 2177—2181 |
| [31] |
Zhao C. J., Wang Z. J., Yan Y., Xu H., Zhou J. Y., Yang L. W., Wang D. S., Environ. Sci., 2022, 43(2), 907—919 |
| [32] |
赵传靓, 王子婕, 闫仪, 徐慧, 周俊垣, 杨利伟, 王东升. 环境科学. 2022, 43(2), 907—919 |
| [33] |
Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A., Catal. Today, 2020, 357, 176—184 |
| [34] |
Cao X. X., Wang R. Y., Peng Q., Zhao H. W., Fan H., Liu H., Liu Q. Q., Polymer, 2021, 233, 124192 |
| [35] |
Chen F. Z., Wang Y. Q., Tian Y. L., Zhang D. W., Song J. L., Crick C. R., Carmalt C. J., Parkin I. P., Lu Y., Chem. Soc. Rev., 2022, 51(20), 8476—8583 |
| [36] |
Yang L. K., Wu L. S., Yang X., Ma J. C., Nie Y., Jiang X. C., Acta Mater. Compositae Sin., 2024, 41(8), 3950—3967 |
| [37] |
杨立凯, 吴林森, 杨旭, 马佳晨, 聂永, 蒋绪川. 复合材料学报. 2024, 41(8), 3950—3967 |
| [38] |
Zhang M. Y., Ma L. J., Wang Q., Hao P., Zheng X., Colloid. Surface A, 2020, 604, 125291 |
| [39] |
Cassie A., Baxter S., Trans. Faraday Soc., 1944, 40, 546—550 |
| [40] |
Guo J. W., Yu L. H., Yue H. B., React. Funct. Polym., 2019, 135, 58—64 |
| [41] |
Han N., Zhang Z. X., Gao H. K., Qian Y. Q., Tan L. L., Yang C., Zhang H. R., Cui Z. Y., Li W., Zhang X. X., ACS Appl. Mater. Interfaces, 2019, 12(2), 2926—2934 |
| [42] |
Li S. S., Huang Z., Zhang H. J., Deng X. G., Ran S. L., Zhang J., Jia Q. L., Zhang S. W., Ceram. Int., 2021, 47(18), 25674—25679 |
| [43] |
Lee D. H., Ko K. C., Ko J. H., Kang S. Y., Lee S. M., Kim H. J., Ko Y. J., Lee J. Y., Son S. U., ACS Macro Lett., 2018, 7(6), 651—655 |
| [44] |
Wang Y. C., Xie J. S., Ren Z. H., Guan Z. H., Chem. Eng. J., 2022, 448, 137687 |
| [45] |
Zhang M. H., Xin X. L., Xiao Z. Y., Wang R. M., Zhang L. L., Sun D. F., J. Mater. Chem. A, 2017, 5(3), 1168—1175 |
| [46] |
Jayaramulu K., Geyer F., Petr M., Zboril R., Vollmer D., Fischer R. A., Adv. Mater., 2017, 29(12), 1605307 |
| [47] |
Jayaramulu K., Datta K. K. R., Rösler C., Petr M., Otyepka M., Zboril R., Fischer R. A., Angew. Chem. Int. Ed., 2016, 55(3), 1178—1182 |
| [48] |
Bai C. Y., Hu C. B., Ni P. Y., Zhang X., Zhang W. X., Zhang S., Tang J. T., Li T. Z., Li Y., Surf. Interfaces, 2023, 37, 102679 |
| [49] |
Cao W. T., Liu Y. J., Ma M. G., Zhu J. F., Colloid. Surface A, 2017, 529, 18—25 |
| [50] |
Xu M. H., Pan G. X., Guo Y. H., Liang Q., Yu Z. J., Cao Y. Y., Wang Y. Y., J. Water Process Eng., 2024, 60, 105211 |
| [51] |
Chen L., Zhou C. L., Yang H., Lin J., Ge Y., Zhou W., Lu C. Y., Tan L. X., Dong L. C., Chem. Commun., 2021, 57(87), 11533—11536 |
/
| 〈 |
|
〉 |