分子介导组装高性能表面等离激元器件
Molecule-directed Assembly of High-performance Surface Plasmonic Devices
表面等离激元器件的光场束缚能力和光与物质的相互作用可有效突破衍射极限制约, 在纳米光子学与光电器件集成方面展现出巨大潜力. 基于化学合成的贵金属纳米颗粒具备亚波长尺寸特征与优异的等离激元性能, 是构筑高性能表面等离激元器件的理想材料. 为了获得高性能表面等离激元器件, 高通量、 低成本且结构可控的自组装策略是关键.本综述聚焦于以DNA介导组装为代表的组装方法在构造强耦合、 非线性及低损耗的新型等离激元器件中的应用. 以表面等离激元中的关键物理过程为基础, 重点分析了DNA分子的结构精度与可编程特性对光物理过程的赋能作用, 旨在推动从生物高分子到新型纳米光学器件的精确构筑的新范式.最后, 总结了当前自组装光学器件在跨尺度制造、 结构缺陷与损耗调控等方面面临的关键挑战, 并在此基础上提出了未来的重点探索方向和可行的解决方案. DNA介导组装在高性能、 多功能等离激元结构和器件方面展现出广阔前景, 有望在光通信、 量子信息、 人工智能及疾病检测等领域实现重要应用.
Surface plasmon-based devices exhibit exceptional light confinement and enhanced light-matter interactions at subwavelength scales, offering a promising route to overcome the diffraction limit and enabling breakthroughs in nanophotonics and optoelectronic integration. Chemically synthesized noble metal nanoparticles, with their intrinsic subwavelength dimensions and outstanding plasmonic properties, have emerged as ideal building blocks for high-performance surface plasmon devices. To realize this potential, high-throughput, cost-effective, and structurally controllable self-assembly strategies are essential. This review focuses on DNA-directed assembly approaches, highlighting their applications in constructing strongly coupled, nonlinear, and low-loss plasmonic devices. Based on the fundamental physical processes of surface plasmons, we emphasize how the structural precision and programmability of DNA molecules empower optical phenomena, aiming to establish a new paradigm for the precise construction of advanced nanophotonic devices using biological macromolecules. Finally, this review summarizes the key challenges currently faced by self-assembled photonic devices, including cross-scale fabrication, structural defects, and loss control, and, on this basis, proposes future key research directions and feasible solutions. DNA-directed assembly demonstrate broad prospects in the development of high-performance and multifunctional plasmonic structures and devices, with potential applications in optical communication, quantum information, artificial intelligence and disease detection.
Surface plasmonic device / Metal nanoparticles / DNA-directed assembly
| [1] |
Gramotnev D. K., Bozhevolnyi S. I., Nat. Photonics, 2010, 4(2), 83—91 |
| [2] |
Baumberg J. J., Aizpurua J., Mikkelsen M. H., Smith D. R., Nat. Mater., 2019, 18(7), 668—678 |
| [3] |
Gramotnev D. K., Vogel M. W., Stockman M. I., J. Appl. Phys., 2008, 104(3), 034311 |
| [4] |
Chikkaraddy R., de Nijs B., Benz F., Barrow S. J., Scherman O. A., Rosta E., Demetriadou A., Fox P., Hess O., Baumberg J. J., Nature, 2016, 535(7610), 127—130 |
| [5] |
Ellenbogen T., Seo K., Crozier K. B., Nano Lett., 2012, 12(2), 1026—1031 |
| [6] |
Cai W., White J. S., Brongersma M. L., Nano Lett., 2009, 9(12), 4403—4411 |
| [7] |
Neutens P., van Dorpe P., de Vlaminck I., Lagae L., Borghs G., Nat. Photonics, 2009, 3(5), 283—286 |
| [8] |
Zia R., Schuller J. A., Chandran A., Brongersma M. L., Materials Today, 2006, 9(7/8), 20—27 |
| [9] |
Sau T. K., Murphy C. J., Langmuir, 2004, 20(15), 6414—6420 |
| [10] |
Nikoobakht B., El⁃Sayed M. A., Chem. Mater., 2003, 15(10), 1957—1962 |
| [11] |
Zheng J., Cheng X., Zhang H., Bai X., Ai R., Shao L., Wang J., Chem. Rev., 2021, 121(21), 13342—13453 |
| [12] |
Kelly K. L., Coronado E., Zhao L. L., Schatz G. C., J. Phys. Chem. B, 2003, 107(3), 668—677 |
| [13] |
Kravets V. G., Kabashin A. V., Barnes W. L., Grigorenko A. N., Chem. Rev., 2018, 118(12), 5912—5951 |
| [14] |
Noginov M. A., Zhu G., Belgrave A. M., Bakker R., Shalaev V. M., Nature, 2009, 460(7259), 1110—1112 |
| [15] |
Sun W., Shen J., Zhao Z., Arellano N., Rettner C., Tang J., Cao T., Zhou Z., Ta T., Streit J. K., Fagan J. A., Schaus T., Zheng M., Han S. J., Shih W. M., Maune H. T., Yin P., Science, 2020, 368(6493), 874—877 |
| [16] |
Varghese B., Cheong F. C., Sindhu S., Yu T., Lim C. T., Valiyaveettil S., Sow C. H., Langmuir, 2006, 22(19), 8248—8252 |
| [17] |
Malaquin L., Kraus T., Schmid H., Delamarche E., Wolf H., Langmuir, 2007, 23(23), 11513—11521 |
| [18] |
Zhou Y., Zhou X., Park D. J., Torabi K., Brown K. A., Jones M. R., Zhang C., Schatz G. C., Mirkin C. A., Nano Lett., 2014, 14(4), 2157—2161 |
| [19] |
Qi X., Pérez L. A., Mendoza⁃Carreño J., Garriga M., Alonso M. I., Mihi A., Nat. Commun., 2025, 16(1), 1687 |
| [20] |
Zhao M., Chen Y., Wang K., Zhang Z., Streit J. K., Fagan J. A., Tang J., Zheng M., Yang C., Zhu Z., Sun W., Science, 2020, 368(6493), 878—881 |
| [21] |
Schuknecht F., Kołątaj K., Steinberger M., Liedl T., Lohmueller T., Nat. Commun., 2023, 14(1), 7192 |
| [22] |
Xie M., Fang W., Qu Z., Hu Y., Zhang Y., Chao J., Shi J., Wang L., Wang L., Tian Y., Fan C., Liu H., Nat. Commun., 2023, 14(1), 1745 |
| [23] |
Liu N., Liedl T., Chem. Rev., 2018, 118(6), 3032—3053 |
| [24] |
Kauranen M., Zayats A. V., Nat. Photonics, 2012, 6(11), 737—748 |
| [25] |
Krasavin A.V., Ginzburg P., Zayats A.V., Laser Photonics Rev., 2018, 12(1), 1700082 |
| [26] |
Ciracì C., Poutrina E., Scalora M., Smith D. R., Phys. Rev. B, 2012, 86(11), 115451 |
| [27] |
Cui X., Lai Y., Ai R., Wang H., Shao L., Chen H., Zhang W., Wang J., Adv. Opt. Mater., 2020, 8(23), 2001173 |
| [28] |
Celebrano M., Wu X., Baselli M., Großmann S., Biagioni, P., Locatelli A., De Angelis C., Cerullo G., Osellame R., Hecht B., Duò L., Ciccacci F., Finazzi M., Nat. Nanotechnol., 2015, 10(5), 412—417 |
| [29] |
Wang Y., Peng Z., de Wilde Y., Lei D., Nanophotonics, 2024, 13(18), 3337—3346 |
| [30] |
Li G. C., Lei D., Qiu M., Jin W., Lan S., Zayats A. V., Nat. Commun., 2021, 12(1), 4326 |
| [31] |
Chang D. E., Vuletić V., Lukin M. D., Nat. Photonics, 2014, 8(9), 685—694 |
| [32] |
Kern C., Zürch M., Spielmann C., Nanophotonics, 2015, 4(3), 303—323 |
| [33] |
Tim B., Błaszkiewicz P., Kotkowiak M., Int. J. Mol. Sci., 2021, 23(1), 291 |
| [34] |
Wang H. L., You E. M., Panneerselvam R., Ding S. Y., Tian Z. Q., Light Sci. Appl., 2021, 10(1), 161 |
| [35] |
Ding W., Xia Y., Song H., Li T., Yang D., Dong A., Angew. Chem. Int. Ed., 2024, 63, e202401945 |
| [36] |
Sobhani A., Knight M. W., Wang Y., Zheng B., King N. S., Brown L. V., Fang Z., Nordlander P., Halas N. J., Nat. Commun., 2013, 4(1), 1643 |
| [37] |
Feng L., Huo P., Liang Y., Xu T., Adv. Mater. 2020, 32(27), 1903787 |
| [38] |
Wang B., Yu P., Wang W., Zhang X., Kuo H., Xu H., Wang Z. M., Adv. Opt. Mater., 2021, 9(7), 2001520 |
| [39] |
Heilpern T., Manjare M., Govorov A. O., Wiederrecht G. P., Gray S. K., Harutyunyan H., Nat. Commun., 2018, 9(1), 1853 |
| [40] |
Khurgin J. B., Nat. Nanotechnol., 2015, 10(1), 2—6 |
| [41] |
Khurgin J. B., Nanophotonics, 2020, 9(2), 453—471 |
| [42] |
Halas N. J., Lal S., Chang W. S., Link S., Nordlander P., Chem. Rev., 2011, 111(6), 3913—3961 |
| [43] |
Xu Z., Li S., Yin X., Zhao H., Liu L., Sci. Rep., 2017, 7(1), 6098 |
| [44] |
Boriskina S. V., Cooper T. A., Zeng L., Ni G., Tong J. K., Tsurimaki Y., Huang Y., Meroueh L., Mahan G., Chen G., Adv. Opt. Photonics, 2017, 9(4), 775 |
| [45] |
Kolomenski A., Kolomenskii A., Noel J., Peng S., Schuessler H., Appl. Opt., 2009, 48(30), 5683 |
| [46] |
Trügler A., Tinguely J. C., Krenn J. R., Hohenau A., Hohenester U., Phys. Rev. B, 2011, 83(8), 081412 |
| [47] |
Guo Z., Huang Q., Wang C., Gao P., Zhang W., Zhao Z., Yan L., Luo X., Plasmonics, 2014, 9(1), 103—110 |
| [48] |
Ciracì C., Vidal⁃Codina F., Yoo D., Peraire J., Oh S. H., Smith D. R., ACS Photonics, 2020, 7(4), 908—913 |
| [49] |
Gittinger M., Höflich K., Smirnov V., Kollmann H., Lienau C., Silies M., Nanophotonics, 2020, 9(2), 401—412 |
| [50] |
Huang J. S., Nat. Commun., 2010, 1, 150 |
| [51] |
Whitesides G. M., Grzybowski B., Science, 2002, 295(5564), 2418—2421 |
| [52] |
Rao A., Roy S., Jain V., Pillai P. P., ACS Appl. Mater. Interfaces, 2023, 15(21), 25248—25274 |
| [53] |
Bishop K. J. M., Wilmer C. E., Soh S., Grzybowski B. A., Small, 2009, 5(14), 1600—1630 |
| [54] |
Zhang H., Kinnear C., Mulvaney P., Adv. Mater., 2020, 32(18), 1904551 |
| [55] |
Jambhulkar S., Ravichandran D., Zhu Y., Thippanna V., Ramanathan A., Patil D., Fonseca N., Thummalapalli S. V., Sundaravadivelan B., Sun A., Xu W., Yang S., Kannan A. M., Golan Y., Lancaster J., Chen L., Joyee E. B., Song K., Small, 2024, 20(6), 2306394 |
| [56] |
Zhang S. Y., Regulacio M. D., Han M. Y., Chem. Soc. Rev., 2014, 43(7), 2301 |
| [57] |
Boles M. A., Engel M., Talapin D. V., Chem. Rev., 2016, 116(18), 11220—11289 |
| [58] |
Dong A., Chen J., Vora P. M., Kikkawa J. M., Murray C. B., Nature, 2010, 466(7305), 474—477 |
| [59] |
Bigioni T. P., Lin X. M., Nguyen T. T., Corwin E. I., Witten T. A., Jaeger H. M., Nat. Mater., 2006, 5(4), 265—270 |
| [60] |
Schulz F., Pavelka O., Lehmkühler F., Westermeier F., Okamura Y., Mueller N. S., Reich S., Lange H., Nat. Commun., 2020, 11(1), 3821 |
| [61] |
Cheng W., Campolongo M. J., Cha J. J., Tan S. J., Umbach C. C., Muller D. A., Luo D., Nat. Mater., 2009, 8(6), 519—525 |
| [62] |
Santos P. J., Gabrys P. A., Zornberg L. Z., Lee M. S., Macfarlane R. J., Nature, 2021, 591(7851), 586—591 |
| [63] |
Macfarlane R. J., Lee B., Jones M. R., Harris N., Schatz G. C., Mirkin C. A., Science, 2011, 334(6053), 204—208 |
| [64] |
Lin H., Lee S., Sun L., Spellings M., Engel M., Glotzer S. C., Mirkin C. A., Science, 2017, 355(6328), 931—935 |
| [65] |
Zhou W., Li Y., Je K., Vo T., Lin H., Partridge B. E., Huang Z., Glotzer S. C., Mirkin C. A., Science, 2024, 383(6680), 312—319 |
| [66] |
Park D. J., Zhang C., Ku J. C., Zhou Y., Schatz G. C., Mirkin C. A., Proc. Natl. Acad. Sci. U.S.A., 2015, 112(4), 977—981 |
| [67] |
Zhou X., Yao D., Hua W., Huang N., Chen X., Li L., He M., Zhang Y., Guo Y., Xiao S., Bian F., Liang H., Proc. Natl. Acad. Sci. U.S.A., 2020 , 117(11) 5617—5623 |
| [68] |
Yao D., Zhang Y., Zhou X., Sun X., Liu X., Zhou J., Jiang W., Hua W., Liang H., Proc. Natl. Acad. Sci. U.S.A., 2023, 120(18), e2219034120 |
| [69] |
Ding B., Deng Z., Yan H., Cabrini S., Zuckermann R. N., Bokor J., J. Am. Chem. Soc., 2010, 132(10), 3248—3249 |
| [70] |
Liu W., Halverson J., Tian Y., Tkachenko A. V., Gang O., Nat. Chem., 2016, 8(9), 867—873 |
| [71] |
Urban M. J., Dutta P. K., Wang P., Duan X., Shen X., Ding B., Ke Y., Liu N., J. Am. Chem. Soc., 2016, 138(17), 5495—5498 |
| [72] |
Lan X., Lu X., Shen C., Ke Y., Ni W., Wang Q., J. Am. Chem. Soc., 2015, 137(1), 457—462 |
| [73] |
Mastroianni A. J., Claridge S. A., Alivisatos A. P., J. Am. Chem. Soc., 2009, 131(24), 8455—8459 |
| [74] |
Kuzyk A., Schreiber R., Fan Z., Pardatscher G., Roller E. M., Högele A., Simmel F. C., Govorov A. O., Liedl T., Nature, 2012, 483(7389), 311—314 |
| [75] |
Kuzyk A., Yang Y., Duan X., Stoll S., Govorov A. O., Sugiyama H., Endo M., Liu N., Nat. Commun., 2016, 7(1), 10591 |
| [76] |
Kuzyk A., Urban M. J., Idili A., Ricci F., Liu N., Sci. Adv., 2017, 3(4), e1602803 |
| [77] |
Kuzyk A., Schreiber R., Zhang H., Govorov A. O., Liedl T., Liu N., Nat. Mater., 2014, 13(9), 862—866 |
| [78] |
Zhan P., Wen T., Wang Z., He Y., Shi J., Wang T., Liu X., Lu G., Ding B., Angew. Chem. Int. Ed., 2018, 57(11), 2846—2850 |
| [79] |
Zhang Y., Chao J., Liu H., Wang F., Su S., Liu B., Zhang L., Shi J., Wang L., Huang W., Wang L., Fan C., Angew. Chem. Int. Ed., 2016, 55(28), 8036—8040 |
| [80] |
Niu R., Song C., Gao F., Fang W., Jiang X., Ren S., Zhu D., Su S., Chao J., Chen S., Fan C., Wang L., Angew. Chem. Int. Ed., 2021, 60(21), 11695—11701 |
| [81] |
Luo X., Chem. Sci., 2020, 11(19), 4911—4921 |
| [82] |
Edwardson T. G. W., Nat. Chem., 2016, 8, 162—170 |
| [83] |
Liu Y., Zeng T., Liu C., Fang X., Li S., Cao X., Lu C., Yang H., Nano Lett., 2023, 23(24), 11569—11577 |
| [84] |
Zhu W., Satterthwaite P. F., Jastrzebska⁃Perfect P., Brenes R., Niroui F., Sci. Adv., 2022, 8(43), eabq4869 |
| [85] |
Flauraud V., Mastrangeli M., Bernasconi G. D., Butet J., Alexander D. T. L., Shahrabi E., Martin O. J. F., Brugger J., Nat. Nanotechnol., 2017, 12(1), 73—80 |
| [86] |
Kraus T., Malaquin L., Schmid H., Riess W., Spencer N. D., Wolf H., Nat. Nanotechnol., 2007, 2(9), 570—576 |
| [87] |
Lin Q. Y., Mason J. A., Li Z., Zhou W., O’Brien M. N., Brown K. A., Jones M. R., Butun S., Lee B., Dravid V. P., Aydin K., Mirkin C. A., Science, 2018, 359(6376), 669—672 |
| [88] |
Zhou W., Liu Z., Huang Z., Lin H., Samanta D., Lin Q. Y., Aydin K., Mirkin C. A., Proc. Natl. Acad. Sci. U.S.A., 2020, 117(35), 21052—21057 |
| [89] |
Hung A. M., Micheel C. M., Bozano L. D., Osterbur L. W., Wallraff G. M., Cha J. N., Nature Nanotech, 2010, 5(2), 121—126 |
| [90] |
Michelson A., Shani L., Kahn J. S., Redeker D. C., Lee I., DeOlivares K. R., Kisslinger K., Tiwale N., Yan H., Pattammattel A., Nam Y., Pribiag V. S., Gang O., Sci. Adv., 2025, 11, eadt5620 |
| [91] |
Frisk Kockum A., Miranowicz A., de Liberato S., Savasta S., Nori F., Nat. Rev. Phys., 2019, 1(1), 19—40 |
| [92] |
Mueller N. S., Okamura Y., Vieira B. G. M., Juergensen S., Lange H., Barros E. B., Schulz F., Reich S., Nature, 2020, 583(7818), 780—784 |
| [93] |
Wang D., Guan J., Hu J., Bourgeois M. R., Odom T. W., Acc. Chem. Res., 2019, 52(11), 2997—3007 |
| [94] |
Borah R., Ninakanti R., Bals S., Verbruggen S. W., Sci. Rep., 2022, 12(1), 15738 |
| [95] |
Kauranen M., Zayats A. V., Nat. Photonics, 2012, 6(11), 737—748 |
| [96] |
Chen H., Jiang Z., Hu H., Kang B., Zhang B., Mi X., Guo L., Zhang C., Li J., Lu J., Yan L., Fu Z., Zhang Z., Zheng H., Xu H., Nat. Photonics., 2022, 16(9), 651—657 |
| [97] |
Zhang Y., Xu D. D., Tanriover I., Zhou W., Li Y., López⁃Arteaga R., Aydin K., Mirkin C. A., Nat. Photonics, 2024, 19(1), 20—27 |
| [98] |
Wang Y., Peng Z., de Wilde Y., Lei D., Nanophotonics, 2024, 13(18), 3337—3346 |
| [99] |
Dong Z., Asbahi M., Lin J., Zhu D., Wang Y. M., Hippalgaonkar K., Chu H. S., Goh W. P., Wang F., Huang Z., Yang J. K. W., Nano Lett., 2015, 15(9), 5976—5981 |
| [100] |
Melikyan A., Alloatti L., Muslija A., Hillerkuss D., Schindler P. C., Li J., Palmer R., Korn D., Muehlbrandt S., van Thourhout D., Chen B., Dinu R., Sommer M., Koos C., Kohl M., Freude W., Leuthold J., Nat. Photonics, 2014, 8(3), 229—233 |
| [101] |
Haffner C., Chelladurai D., Fedoryshyn Y., Josten A., Baeuerle B., Heni W., Watanabe T., Cui T., Cheng B., Saha S., Elder D. L., Dalton L. R., Boltasseva A., Shalaev V. M., Kinsey N., Leuthold J., Nature, 2018, 556(7702), 483—486 |
| [102] |
Shi J., Guo Q., Shi Z., Zhang S., Xu H., Appl. Phys. Lett., 2021, 119(13), 130501 |
| [103] |
Gür F. N., McPolin C. P. T., Raza S., Mayer M., Roth D. J., Steiner A. M., Löffler M., Fery A., Brongersma M. L., Zayats A. V., König T. A. F., Schmidt T. L., Nano Lett., 2018, 18(11), 7323—7329 |
| [104] |
Wang P., Huh J., Lee J., Kim K., Park K. J., Lee S., Ke Y., Adv. Mater., 2019, 31(29), 1901364 |
| [105] |
Wang P., Huh J. H., Park H., Yang D., Zhang Y., Zhang Y., Lee J., Lee S., Ke Y., Nano Lett., 2020, 20(12), 8926—8932 |
| [106] |
Mayer M., Potapov P. L., Pohl D., Steiner A. M., Schultz J., Rellinghaus B., Lubk A., König T. A. F., Fery A., Nano Lett., 2019, 19(6), 3854—3862 |
| [107] |
Roller E. M., Besteiro L. V., Pupp C., Khorashad L. K., Govorov A. O., Liedl T., Nat. Phys., 2017, 13(8), 761—765 |
| [108] |
Wang N., Wang Q., Huang Y., Curr. Appl. Phys., 2021, 27, 66—72 |
| [109] |
Willets K. A., Van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58(1), 267—297 |
| [110] |
Tim B., Błaszkiewicz P., Kotkowiak M., Int. J. Mol. Sci., 2021, 23(1), 291 |
| [111] |
Guerrini L., Graham D., Chem. Soc. Rev., 2012, 41(21), 7085 |
| [112] |
Zhang Y. J., Ze H., Fang P. P., Huang Y. F., Kudelski A., Fernández⁃Vidal J., Hardwick L. J., Lipkowski J., Tian Z. Q., Li J. F., Nat. Rev. Methods Primers, 2023, 3(1), 36 |
| [113] |
Yang J., Wang H., Zhu Z., Yue M., Yang W., Zhang X., Ruan X., Guan Z., Yang Z., Cai W., Wu Y., Fan F., Dong J., Zhang H., Xu H., Tian Z., Li J., Angew. Chem. Int. Ed., 2022, 61(5), e202112749 |
| [114] |
Funck T., Nicoli F., Kuzyk A., Liedl T., Angew. Chem. Int. Ed., 2018, 57(41), 13495—13498 |
| [115] |
Zhou C., Xin L., Duan X., Urban M. J., Liu N., Nano Lett., 2018, 18(11), 7395—7399 |
| [116] |
Liu Z., Dong J., Pan J., Zhou C., Fan C., Wang Q., Chem. Res. Chinese Universities, 2021, 37(4), 914—918 |
| [117] |
Huang Y., Nguyen M. K., Natarajan A. K., Nguyen V. H., Kuzyk A., ACS Appl. Mater. Interfaces, 2018, 10(51), 44221—44225 |
| [118] |
Liu F., Jiang Q., Liu Q., Li N., Han Z., Liu C., Wang Z., Jiao Y., Sun J., Ding B., CCS Chem., 2021, 3(3), 985—993 |
| [119] |
Liu M., Wang F., Mao X., Wang L., Tian Y., Fan C., Li Q., Nat. Protoc., 2021, 16, 383—404 |
| [120] |
Fan Z., Mao X., Zhu M., Hu X., Li M., Huang L., Li J., Maimaiti T., Zuo X., Fan C., Li Q., Liu M., Tian Y., Angew. Chem. Int. Ed., 2025, 64(1), e202413244 |
| [121] |
Xie X., Hu X., Li Q., Yin M., Song H., Hu J., Wang L., Fan C., Chen N., Nano Lett., 2020, 20(7), 5228—5235 |
| [122] |
Tikhomirov G., Petersen P., Qian L., Nature, 2017, 552(7683), 67—71 |
| [123] |
Zhang H., Kinnear C., Mulvaney P., Adv. Mater., 2020, 32(18), 1904551 |
| [124] |
Wang Y. W., Li D., Liang W. K., Sun Y. H., Jiang L., Chem. J. Chinese Universities, 2021, 42(4), 1213—1224 |
| [125] |
王雅雯, 李东, 梁文凯, 孙迎辉, 江林. 高等学校化学学报, 2021, 42(4), 1213—1224 |
| [126] |
Li D., Sun Y. H., Wang Z. S., Huang J., Lü N., Jiang L., Chem. J. Chinese Universities, 2020, 41(2), 221—227 |
| [127] |
李东, 孙迎辉, 王中舜, 黄晶, 吕男, 江林. 高等学校化学学报, 2020, 41(2), 221—227 |
| [128] |
Khanikaev A. B., Alù A., Nat. Commun., 2024, 15(1), 931 |
| [129] |
Hashemi A., Zakeri M. J., Jung P. S., Blanco⁃Redondo A., APL Photonics, 2025, 10(1), 010903 |
国家重点研发计划项目(2022YFB3503700)
国家自然科学基金(22271003)
/
| 〈 |
|
〉 |