铜-钛硅分子筛协同催化低温甲醇水蒸气重整反应
卢庆 , 陈雪 , 刘园园 , 王菲 , 脱永笑 , 赵浩扬 , 伊晨雪 , 穆涛洋 , 徐少飞 , 秦浩田 , 冯翔 , CHEN De
高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (10) : 76 -84.
铜-钛硅分子筛协同催化低温甲醇水蒸气重整反应
Synergistic Catalysis of Cu/TS-1 for Low-temperature Methanol Steam Reforming Reaction
低温甲醇水蒸气重整制氢技术(L-MSR)是解决当前氢能源可持续性和氢源分布不均的重要途经之 一. 本文研究了铜负载于不同Ti配位形式的钛硅分子筛(Cu/TS-1)催化剂在低温甲醇水蒸气重整制氢反应中 的性能, 并结合X射线光衍射仪(XRD)、 透射电子显微镜(TEM)、 氨气程序升温脱附测试(NH3-TPD)和CO2程序升温脱附测试(CO2-TPD)等表征方法, 揭示了铜与骨架钛之间的协同吸附作用显著提高了催化剂的低温 活性和稳定性. 结果表明, 在常压、 240 ℃、 水醇比为2的条件下, Cu/TS-1催化剂表现出148.4 mmol·g-1·h-1 的氢气产率, 单位质量铜的活性为891 mmol·g-1·h-1, 是共沉淀法合成Cu/ZnO催化剂单位铜质量活性 (约621 mmol·g-1·h-1)的1.4倍. 在构效关系分析中发现, 骨架钛的引入增加了分子筛表面的弱酸性位点, 改善了铜纳米颗粒的分散性及其与钛硅分子筛表面的相互作用. 此外, 骨架钛与铜纳米颗粒之间的相互作用有利于形成丰富的双配位CO2吸附位点, 优化了MSR反应中甲酸中间体的吸附构型, 从而显著提升了甲酸关键中间体的分解速率, 最终使Cu/TS-1催化剂具备了优异的低温制氢活性.
Low-temperature methanol steam reforming(L-MSR) for hydrogen production is a promising approach to addressing the challenges of hydrogen energy sustainability and uneven hydrogen sources distribution. This research focuses on investigating the performance of copper-loaded titanium silicate molecular sieves(Cu/TS-1) with varying Ti coordination configurations in hydrogen production via L-MSR. Through comprehensive characterization employing X-ray diffraction(XRD), transmission electron microscope(TEM), NH3-temperature programmed desorption(TPD) and CO2-TPD, we demonstrate that the synergistic adsorption interaction between Cu and framework Ti significantly enhances both the low-temperature catalytic activity and stability. The results indicate that under atmospheric pressure at 240 ℃ with a water/methanol ratio of 2, the Cu/TS-1 catalyst exhibits a hydrogen production rate of 148.4 mmol·g-1·h-1 and its copper mass-specific activity reaches 891 mmol·g-1·h-1, representing a 1.4-fold enhancement compared to the ca. 621 mmol·g-1·h-1 of the co-precipitation synthesized Cu/ZnO catalyst reported in literature. Structural-activity relationship analysis reveals that the framework Ti in TS-1 increases the weak acidic sites, improves the Cu nanoparticles dispersion, and strengthens the interaction between Cu and TS-1 surface. Additionally, the interaction between framework Ti and Cu nanoparticles facilitates the formation of bidentate CO2 adsorption sites, optimizing the adsorption of formic acid intermediates and accelerating their decomposition, which significantly boosts low-temperature hydrogen production.
Cu-based catalyst / Hydrogen production / Molecular sieve / Nanomaterials / Interface
| [1] |
Chen L., Qi Z., Peng X., Chen J. L., Pao C. W., Zhang X., Dun C., Young M., Prendergast D., Urban J. J., Guo J., Somorjai G. A., Su J., J. Am. Chem. Soc., 2021, 143(31), 12074—12081 |
| [2] |
Xia T., Ren Q., Yang J., Li Z., Shao M., Duan X., Chem. Res. Chinese Universities, 2024, 40(4), 577—589 |
| [3] |
Cortright R. D., Davda R. R., Dumesic J. A., Nature, 2002, 418(6901), 964—967 |
| [4] |
Shabaker J., J. Catal., 2003, 215(2), 344—352 |
| [5] |
Li D., Xu F., Tang X., Dai S., Pu T., Liu X., Tian P., Xuan F., Xu Z., Wachs I. E., Zhu M., Nat. Catal., 2022, 5(2), 99—108 |
| [6] |
Pan X. M., Song X. Y., Zhou W., Ma J. X., CIESC Journal, 2004, 55, 96—98 |
| [7] |
潘相敏, 宋小瑜, 周伟, 马建新. 化工学报, 2004, 55, 96—98 |
| [8] |
Xu R., Luan X. B., Xia G. F., Song Y., Lin W., Petroleum Processing and Petrochemicals, 2023, 54(11), 1—7 |
| [9] |
徐润, 栾学斌, 夏国富, 宋烨, 林伟. 石油炼制与化工, 2023, 54(11), 1—7 |
| [10] |
He J. P., Zhang L., Chen L., Yang Z. X., Y., Tong Y. F., Chem. J. Chinese Universities, 2017, 38(10), 1822—1828 |
| [11] |
贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. 高等学校化学学报, 2017, 38(10), 1822—1828 |
| [12] |
Huang M., Bo Q. F., Li J., Qiao J. X., Yuan S. L., Zhang B., Chen H. L., Jiang Y., J. Fuel Chem. Technol., 2024, 52(10), 1443—1453 |
| [13] |
黄敏, 薄其飞, 李娟, 乔靖萱, 袁善良, 张彪, 陈洪林, 蒋毅. 燃料化学学报, 2024, 52(10), 1443—1453 |
| [14] |
van den Berg R., Parmentier T. E., Elkjær C. F., Gommes C. J., Sehested J., Helveg S., de Jongh P. E., de Jong K. P., ACS Catal., 2015, 5(7), 4439—4448 |
| [15] |
Sun X. M., Sha Q. H., Wang C. W., Zhou D. Q., CIESC Journal, 2021, 72(12), 5975—6001 |
| [16] |
孙晓明, 沙琪昊, 王陈伟, 周道金. 化工学报, 2021, 72(12), 5975—6001 |
| [17] |
Yu K. M. K., Tong W., West A., Cheung K., Li T., Smith G., Guo Y., Tsang S. C. E., Nat. Commun., 2012, 3(1), 1230 |
| [18] |
Rameshan C., Stadlmayr W., Weilach C., Penner S., Lorenz H., Hävecker M., Blume R., Rocha T., Teschner D., Knop⁃Gericke A., Schlögl R., Memmel N., Zemlyanov D., Rupprechter G., Klötzer B., Angew. Chem. Int. Edit., 2010, 49(18), 3224—3227 |
| [19] |
Lin L., Zhou W., Gao R., Yao S., Zhang X., Xu W., Zheng S., Jiang Z., Yu Q., Li Y. W., Shi C., Wen X. D., Ma D., Nature, 2017, 544(7648), 80—84 |
| [20] |
Wang Y. H., Xu H. Y., Zhang J. C., CIESC Journal, 2006, 57(4), 776—779 |
| [21] |
王艳华, 徐恒泳, 张敬畅. 化工学报, 2006, 57(4), 776—779 |
| [22] |
Gao Z., Li A., Liu X., Peng M., Yu S.,Wang M., Ge Y., Li C., Wang T., Wang Z., Zhou W., Ma D., Nature, 2025, 638(8051), 690—696 |
| [23] |
Peng M., Ge Y., Gao R., Yang J., Li A., Xie Z., Yu Q., Zhang J., Asakura H., Zhang H., Liu Z., Zhang Q., Deng J., Zhou J., Zhou W., Hutchings G. J., Ma D., Science, 2025, 387(6735), 769—775 |
| [24] |
Lin D., Zhang Q., Qin Z., Li Q., Feng X., Song Z., Cai Z., Liu Y., Chen X., Chen D., Mintova S., Yang C., Angew. Chem. Int. Edit., 2020, 60(7), 3443—3448 |
| [25] |
Gao W. L., Xin Z., CIESC Journal, 2022, 73(1), 241—254 |
| [26] |
高文莉, 辛忠. 化工学报, 2022, 73(1), 241—254 |
| [27] |
Wang G., Duan X. Z., Yuan W. K., Zhou X. G., CIESC Journal, 2021, 72(10), 5150—5158 |
| [28] |
王刚, 段学志, 袁渭康, 周兴贵. 化工学报, 2021, 72(10), 5150—5158 |
| [29] |
Liu P., Wu Q., Chen Z., Xiao F., Chem. Res. Chinese Universities, 2024, 40(4), 646—656 |
| [30] |
Su Y., Li F., Zhou Z., Qin J., Wang X., Sun P., Wu W., Mol. Catal., 2022, 533, 112752 |
| [31] |
Wu M., Chou L. J., Song H. L., Chinese J. Catal., 2013, 34(4), 789—797 |
| [32] |
吴妹, 丑凌军, 宋焕玲. 催化学报, 2013, 34(4), 789—797 |
| [33] |
Zhang J. N., Regulation of the Active Centers in Titanosilicate Zeolites TS⁃1 and Their Catalytic Performance, Jilin University, Changchun, 2024 |
| [34] |
张佳妮. 钛硅分子筛TS⁃1活性中心的调控及其催化研究, 吉林大学, 长春, 2024 |
| [35] |
Lv G., Wang T., Chen Y., Wang J., Zou X., Lu J., Wang F., Zhang X., Zhai Y., Colloid Surface A, 2022, 633, 127842 |
| [36] |
Deng X., Lin D., Xu Y., Feng X., Chen D., Yang C., Shan H., Chem. Eng. J., 2024, 487, 150338 |
| [37] |
Zhang Y. Y., Yu Q. J., Gao F. Y., Yi H. H., Zhao S. Z., Wu W. J., Meng F. S., Tang X. L., Energy Environ. Prot., 2024, 38(4), 166—178 |
| [38] |
张媛媛, 于庆君, 高凤雨, 易红宏, 赵顺征, 武文静, 孟逢时, 唐晓龙. 能源环境保护, 2024, 38(4), 166—178 |
| [39] |
Wei X., Wang Y., Ren T., Wang H., Wei M., RSC Adv., 2020, 10(2), 1015—1020 |
| [40] |
Xing Y., Yang S. J., Cao L. X., Han J., Li Y. F., Zhang L., Petrochemical Technology, 2022, 51(9), 1011—1016 |
| [41] |
邢月, 杨劭杰, 曹利星, 韩蛟, 李印福, 张磊. 石油化工, 2022, 51(9), 1011—1016 |
| [42] |
Feng X., Lin Y., Zhang C. S., Han J., Qing S. J., Zhang L., Gao Z. X., Guan G. Q., J. Fuel Chem. Technol., 2022, 50(7), 833—840 |
| [43] |
冯旭, 林宇, 张财顺, 韩蛟, 庆绍军, 张磊, 高志贤, 官国清. 燃料化学学报, 2022, 50(7), 833—840 |
| [44] |
Guo Q., Li S., Li J., Hu Y., Duanmu C., ACS Appl. Energ. Mater., 2021, 4(8), 8311—8321 |
| [45] |
Feng K., Meng H., Yang Y. S., Wei M., Chem. Ind. Eng. Prog., 2024, 43(10), 5498—5516 |
| [46] |
冯凯, 孟浩, 杨宇森, 卫敏. 化工进展, 2024, 43(10), 5498—5516 |
| [47] |
Lin D., Feng X., Liu Y. B., Chen X. B., Yang C. H., Chem. Ind. Eng. Prog., 2022, 41(5), 2389—2403 |
| [48] |
林栋, 冯翔, 刘熠斌, 陈小博, 杨朝合. 化工进展, 2022, 41(5), 2389—2403 |
| [49] |
Yang Z., Yu Q., Wang H., Ge Q., Zhu X., J. Catal., 2024, 429, 115247 |
| [50] |
Wang H., Wang L., Lin D., Feng X., Chu X., Li L., Xiao F. S., Catal. Today, 2021, 382, 42—47 |
| [51] |
Shishido T., Yamamoto Y., Morioka H., Takaki K., Takehira K., Appl. Catal. A: Gen., 2004, 263(2), 249—253 |
| [52] |
Qiao W., Yang S., Zhang L., Tian Y., Wang H., Zhang C., Gao Z., Ind. Eng. Chem. Res., 2021, 45(9), 12773—12783 |
| [53] |
Cai F., Lu P., Ibrahim J. J., Fu Y., Zhang J., Sun Y., Ind. Eng. Chem. Res., 2019, 44(23), 11717—11733 |
| [54] |
Zhao L., Tang M., Wang F., Qiu X., Fuel, 2023, 3311, 25748 |
| [55] |
Bossola F., Scotti N., Somodi F., Coduri M., Evangelisti C., Dal Santo V., Appl. Catal. B: Environ., 2019, 258, 118016 |
| [56] |
Shao Z., Zhang S., Liu X., Luo H., Huang C., Zhou H., Wu Z., Li J., Wang H., Sun Y., Appl. Catal. B: Environ., 2022, 316, 121669 |
| [57] |
Mateos⁃Pedrero C., Azenha C., Pacheco Tanaka D. A., Sousa J. M., Mendes A., Appl. Catal. B: Environ., 2020, 277, 119243 |
| [58] |
Meng H., Yang Y., Shen T., Yin Z., Wang L., Liu W., Yin P., Ren Z., Zheng L., Zhang J., Xiao F. S., Wei M., Nat. Commun., 2023, 14(1), 7980 |
| [59] |
Lätsch L., Kaul C., Yakimov A. V., Mcentee R., Baerdemaeker T. D., Parvulescu A. N., Seidel K., Teles J. H., Copéret C., J. Am. Chem. Soc., 2024, 146(43), 29675—29683 |
| [60] |
Song M., Zeng W., Li L., Wu X., Li G., Hu C., Ind. Eng. Chem. Res., 2023, 62(9), 3898—3908 |
国家自然科学基金(22208374)
山东省优秀青年自然科学基金(ZR2024YQ009)
中国石油科技创新基金(2022DQ02-0607)
/
| 〈 |
|
〉 |