RHOUBARI ZEL, HATTAFK, YOUSFIN. A Class of Ebola Virus Disease Models with Post-death Transmission and Environmental Contamination[M]//Studies in Systems, Decision and Control. Cham: Springer International Publishing, 2020, 302: 295-321. DOI: 10.1007/978-3-030-49896-2_11 .
[2]
XUR. Global Stability of an HIV-1 Infection Model with Saturation Infection and Intracellular Delay[J]. J Math Anal Appl, 2011, 375(1): 75-81. DOI: 10.1016/j.jmaa.2010.08.055 .
LIS P, MIAOH. A COVID-19 Spreading Model with Environmental Viruses Based on Data-driven[J]. J Shanxi Univ Nat Sci Ed, 2023, 46(1): 131-140. DOI: 10.13451/j.sxu.ns.2021178 .
LIX W, LIG H. Dynamic Behaviors Analysis of COVID-19 Model with Environmental Virus Effects[J]. J Shandong Univ Nat Sci, 2023, 58(1): 10-15. DOI: 10.6040/j.issn.1671-9352.0.2021.460 .
[7]
AILIA, TENGZ D, ZHANGL. Dynamics in a Disease Transmission Model Coupled Virus Infection in Host with Incubation Delay and Environmental Effects[J].J Appl Math Comput, 2022, 68(6): 4331-4359. DOI: 10.1007/s12190-022-01709-y .
[8]
ALMOCERAA E S, NGUYENV K, HERNANDEZ-VARGASE A. Multiscale Model Within-host and Between-host for Viral Infectious Diseases[J]. J Math Biol, 2018, 77(4): 1035-1057. DOI: 10.1007/s00285-018-1241-y .
[9]
FENGZ L, CENX L, ZHAOY L, et al. Coupled Within-host and Between-host Dynamics and Evolution of Virulence[J]. Math Biosci, 2015, 270: 204-212. DOI: 10.1016/j.mbs.2015.02.012 .
TANGS T, TENGZ D. Coupled Within-host and Between-host Dynamics of Infectious Disease Model with Humoral Immunity[J]. Math Pract Theory, 2019, 49(7): 276-287. DOI: 10.1016/j.mbs.2012.09.004 .
[12]
GILCHRISTM A, COOMBSD. Evolution of Virulence: Interdependence, Constraints, and Selection Using Nested Models[J]. Theor Popul Biol, 2006, 69(2): 145-153. DOI: 10.1016/j.tpb.2005.07.002 .
[13]
FENGZ L, VELASCO-HERNANDEZJ, TAPIA-SANTOSB, et al. A Model for Coupling Within-host and Between-host Dynamics in an Infectious Disease[J]. Nonlinear Dyn, 2012, 68(3): 401-411. DOI: 10.1007/s11071-011-0291-0 .
[14]
FENGZ L, VELASCO-HERNANDEZJ, TAPIA-SANTOSB. A Mathematical Model for Coupling Within-host and Between-host Dynamics in an Environmentally-driven Infectious Disease[J]. Math Biosci, 2013, 241(1): 49-55. DOI: 10.1016/j.mbs.2012.09.004 .
[15]
YADAVA, SRIVASTAVAP K. The Impact of Information and Saturated Treatment with Time Delay in an Infectious Disease Model[J].J Appl Math Comput, 2021, 66(1/2): 277-305. DOI: 10.1007/s12190-020-01436-2 .
[16]
HUL, WANGS F, ZHENGT T, et al. The Effects of Migration and Limited Medical Resources of the Transmission of SARS-COV-2 Model with Two Patches[J].Bull Math Biol, 2022, 84(5): 1-25. DOI: 10.1007/s11538-022-01010-w .
[17]
EDENBOROUGHK M, GILBERTSONB P, BROWNL E. A Mouse Model for the Study of Contact-dependent Transmission of Influenza a Virus and the Factors that Govern Transmissibility[J]. J Virol, 2012, 86(23): 12544-12551. DOI: 10.1128/JVI.00859-12 .
[18]
LINJ Z, XUR, TIANX H. Threshold Dynamics of an HIV-1 Virus Model with both Virus-to-cell and Cell-to-cell Transmissions, Intracellular Delay, and Humoral Immunity[J]. Appl Math Comput, 2017, 315: 516-530. DOI: 10.1016/j.amc.2017.08.004 .
[19]
DUMORTIERF, LLIBREJ, ARTÉSJ C. Qualitative theory of planar differential systems[M]. Berlin: Springer, 2006.
[20]
LASALLEJ P. The stability of dynamical systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976.
[21]
GUCKENHEIMERJ, HOLMESP. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. New York, NY: Springer New York, 1983. DOI: 10.1007/978-1-4612-1140-2 .
[22]
CASTILLO-CHAVEZC, SONGB J. Dynamical Models of Tuberculosis and Their Applications[J]. Math Biosci Eng, 2004, 1(2): 361-404. DOI: 10.3934/mbe.2004.1.361 .