本节以UCI数据集中共享单车租赁数据集(UCI Machine Learning Repository: Bike Sharing Dataset Data Set)为实例背景,抽取部分日期的数据作为实验用例;并依据本文模型,根据天气情况对所有用例的车辆需求情况进行预测,进一步探索复模糊环境下多属性群决策问题的解决方法,并进行灵敏度分析和对比性分析。
本节中,我们分别将本文提出的方法与复模糊环境下的集成算子方法、标准指标集方法[24]、逼近理想解排序法(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS)[12]、多准则妥协解排序法(Multi-criteria Optimization and Compromise Solution,VIKOR)、交互式多标准决策法(Interactive and Multi-Criteria Decision-Making,TODIM)以及后悔理论方法[25]进行了对比性分析。由图 5可知,不同的方法得到的排序结果稍有不同,首先集成算子方法中,算术集成算子受个体意见影响较小,相反,几何集成算子更加重视个体意见在决策中的作用,但都对异常数据的处理能力较弱,容易受到影响;决策指标集方法的决策结果如下:,所以共享单车租赁数量最多的日期为;TOPSIS法通过计算备选方案与正负理想解之间的距离,得出与正理想解贴近程度最高、与负理想解贴近程度最低的备选方案作为最优方案;VIKOR方法在TOPSIS方法中加入了决策风险参数,使决策者可以根据自身经验对决策结果产生影响,加入主观因素后让决策结果有了更多的可能性;TODIM方法和后悔理论方法都描述了决策者有限理性的心理行为特征,它们认为决策者在面对损失时,相较于面对收益有更强的敏感程度,因此,产生了规避后悔的行为方式,根据以上描述,有限理性理论使得决策结果更加符合现实状态。
YUH, HED N, WANGG Y, et al. Big Data for Intelligent Decision Making[J]. Acta Autom Sin, 2020, 46(5): 878-896. DOI: 10.16383/j.aas.c180861
[3]
ZHANJ M, WANGJ J, DINGW P, et al. Three-way Behavioral Decision Making with Hesitant Fuzzy Information Systems: Survey and Challenges[J]. IEEE/CAA J Autom Sin, 2022, 10(2): 330-350. DOI: 10.1109/JAS.2022.106061 .
[4]
QIANY H, LIANGJ Y, YAOY Y, et al. MGRS: A Multi-granulation Rough Set[J]. Inf Sci, 2010, 180(6): 949-970. DOI: 10.1016/j.ins.2009.11.023 .
[5]
YAOY Y. Three-way Decisions with Probabilistic Rough Sets[J]. Inf Sci, 2010, 180(3): 341-353. DOI: 10.1016/j.ins.2009.09.021 .
[6]
YAOY Y. Three-way Decision and Granular Computing[J]. Int J Approx Reason, 2018, 103: 107-123. DOI: 10.1016/j.ijar.2018.09.005 .
MIAOD Q, ZHANGQ H, QIANY H, et al. From Human Intelligence to Machine Implementation Model: Theories and Applications Based on Granular Computing[J]. CAAI Trans Intell Syst, 2016, 11(6): 743-757. DOI: 10.11992/tis.201612014
[9]
ZHANGC, LiD Y, LIANGJ Y. Multi-granularity Three-way Decisions with Adjustable Hesitant Fuzzy Linguistic Multigranulation Decision-theoretic Rough Sets over Two Universes[J]. Inf Sci, 2020, 507: 665-683. DOI: 10.1016/j.ins.2019.01.033 .
[10]
CHENGS H, WUY X, LIY, et al. TWD-SFNN: Three-way Decisions with a Single Hidden Layer Feedforward Neural Network[J]. Inf Sci, 2021, 579: 15-32. DOI: 10.1016/j.ins.2021.07.091 .
[11]
YAOJ T, VASILAKOSA V, PEDRYCZW. Granular Computing: Perspectives and Challenges[J]. IEEE Trans Cybern, 2013, 43(6): 1977-1989. DOI: 10.1109/TSMCC.2012.2236648 .
[12]
BUSTINCEH, BARRENECHEAE, PAGOLAM, et al. A Historical Account of Types of Fuzzy Sets and Their Relationships[J]. IEEE Trans Fuzzy Syst, 2016, 24(1): 179-194. DOI: 10.1109/TFUZZ.2015.2451692 .
[13]
RAMOTD, MILOR, FRIEDMANM, et al. Complex Fuzzy Sets[J]. IEEE Trans Fuzzy Syst, 2002, 10(2): 171-186. DOI: 10.1109/91.995119 .
[14]
JANANIK, RAKKIYAPPANR. Complex Probabilistic Fuzzy Set and Their Aggregation Operators in Group Decision Making Extended to TOPSIS[J]. Eng Appl Artif Intell, 2022, 114: 105010. DOI: 10.1016/j.engappai.2022.105010 .
[15]
SINGHP K. Complex Fuzzy Concept Lattice[J]. Neural Process Lett, 2019, 49(3): 1511-1526. DOI: 10.1007/s11063-018-9884-7. 10 .
[16]
YAZDANBAKHSHO, DICKS. A Systematic Review of Complex Fuzzy Sets and Logic[J]. Fuzzy Sets Syst, 2018, 338: 1-22. DOI: 10.1016/j.fss.2017.01.010 .
[17]
ZHANGC, DINGJ J, ZHANJ M, et al. Incomplete Three-way Multi-attribute Group Decision Making Based on Adjustable Multigranulation Pythagorean Fuzzy Probabilistic Rough Sets[J]. Int J Approx Reason, 2022, 147(C): 40-59. DOI: 10.1016/j.ijar.2022.05.004 .
[18]
KAHNEMAND, TVERSKYA. Prospect Theory: An Analysis of Decision Under Risk[J]. Econometrica, 1979, 47(2): 263. DOI: 10.2307/1914185 .
[19]
BELLD E. Regret in Decision Making Under Uncertainty[J]. Oper Res, 1982, 30(5): 961-981. DOI: 10.1287/opre.30.5.961 .
[20]
WANGW J, ZHANJ M, ZHANGC, et al. A Regret-theory-based Three-way Decision Method with a Priori Probability Tolerance Dominance Relation in Fuzzy Incomplete Information Systems[J]. Inf Fusion, 2023, 89: 382-396. DOI: 10.1016/j.inffus.2022.08.027 .
[21]
WANGT X, LIH X, QIANY H, et al. A Regret-based Three-way Decision Model Under Interval Type-2 Fuzzy Environment[J]. IEEE Trans Fuzzy Syst, 2022, 30(1): 175-189. DOI: 10.1109/TFUZZ.2020.3033448 .
[22]
ZHANGC, ZHANGJ, LiW T, et al. A Regret Theory-based Multi-granularity Three-way Decision Model with Incomplete T-spherical Fuzzy Information and Its Application in Forest Fire Management[J]. Appl Soft Comput, 2023, 145: 110539. DOI: 10.1016/j.asoc.2023.110539 .
[23]
JIAF, LIUP D. A Novel Three-way Decision Model Under Multiple-criteria Environment[J]. Inf Sci, 2019, 471: 29-51. DOI: 10.1016/j.ins.2018.08.051 .
[24]
WANGY C, YANGY, WANGJ P, et al. Examining the Influence of Social Norms on Orderly Parking Behavior of Dockless Bike-sharing Users[J]. Transp Res A Policy Pract, 2021, 147: 284-296. DOI: 10.1016/j.tra.2021.03.022 .
[25]
MOURATIDISK. Bike-sharing, Car-sharing, E-scooters, and Uber: Who are the Shared Mobility Users and where do they Live?[J]. Sustain Cities Soc, 2022, 86: 104161. DOI: 10.1016/j.scs.2022.104161 .
ZHANGC, LID Y, ZHAIY H. Hesitant Fuzzy Linguistic Multigranulation Rough Set over Two Universes and Its Application[J]. Control Decis, 2017, 32(1)105-110. DOI: 10.13195/j.kzyjc.2015.1365
[28]
XIAM M. A Hesitant Fuzzy Linguistic Multi-criteria Decision-making Approach Based on Regret Theory[J]. Int J Fuzzy Syst, 2018, 20(7): 2135-2143. DOI: 10.1007/s40815-018-0502-7 .
[29]
ZHANGC, DINGJ J, LID Y, et al. A Novel Multi-granularity Three-way Decision Making Approach in Q-rung Orthopair Fuzzy Information Systems[J]. Int J Approx Reason, 2021, 138: 161-187. DOI: 10.1016/j.ijar.2021.08.004 .