KUMBHARS B, CHAVANS P, GAWADES S. Adaptive Tuned Vibration Absorber Based on Magnetorheological Elastomer-shape Memory Alloy Composite[J]. Mech Syst Signal Process, 2018, 100: 208-223. DOI: 10.1016/j.ymssp.2017.07.027 .
[2]
COSTAD D A, SAVIM A, DE PAULAA S, et al. Chaos Control of a Shape Memory Alloy Structure Using Thermal Constrained Actuation[J]. Int J Non Linear Mech, 2019, 111: 106-118. DOI: 10.1016/j.ijnonlinmec.2019.02.006 .
[3]
CHOH K, RHEEJ. Nonlinear Finite Element Analysis of Shape Memory Alloy (SMA) Wire Reinforced Hybrid Laminate Composite Shells[J]. Int J Non Linear Mech, 2012, 47(6): 672-678. DOI: 10.1016/j.ijnonlinmec.2011.11.002 .
[4]
FONSECAL M, RODRIGUESG V, SAVIM A, et al. Nonlinear Dynamics of an Origami Wheel with Shape Memory Alloy Actuators[J]. Chaos Solitons Fractals, 2019, 122: 245-261. DOI: 10.1016/j.chaos.2019.03.033 .
[5]
KONHB, HONARVARM, HUTAPEAP. Design Optimization Study of a Shape Memory Alloy Active Needle for Biomedical Applications[J]. Med Eng Phys, 2015, 37(5): 469-477. DOI: 10.1016/j.medengphy.2015.02.013 .
[6]
COSTAD D A, SAVIM A. Nonlinear Dynamics of an SMA-pendulum System[J]. Nonlinear Dyn, 2017, 87(3): 1617-1627. DOI: 10.1007/s11071-016-3137-y .
[7]
PICCIRILLOV, BALTHAZARJ M, PONTESB R. Analytical Study of the Nonlinear Behavior of a Shape Memory Oscillator: Part I: Primary Resonance and Free Response at Low Temperatures[J]. Nonlinear Dyn, 2010, 59(4): 733-746. DOI: 10.1007/s11071-009-9573-1 .
[8]
PICCIRILLOV, BALTHAZARJ M, PONTESB R. Analytical Study of the Nonlinear Behavior of a Shape Memory Oscillator: Part II: Resonance Secondary[J]. Nonlinear Dyn, 2010, 60(4): 513-524. DOI: 10.1007/s11071-009-9611-z .
[9]
LACARBONARAW, BERNARDINID, VESTRONIF. Nonlinear Thermomechanical Oscillations of Shape-memory Devices[J]. Int J Solids Struct, 2004, 41(5/6): 1209-1234. DOI: 10.1016/j.ijsolstr.2003.10.015 .
[10]
SPANOSP D, CACCIOLAP, REDHORSEJ. Random Vibration of SMA Systems via Preisach Formalism[J]. Nonlinear Dyn, 2004, 36(2): 405-419. DOI: 10.1023/B: NODY.0000045514.54248.fa .
[11]
DOBSONS, NOORIM, HOUZ, et al. Modeling and Random Vibration Analysis of SDOF Systems with Asymmetric Hysteresis[J]. Int J Non Linear Mech, 1997, 32(4): 669-680. DOI: 10.1016/s0020-7462(96)00090-x .
[12]
YANX, NIEJ. Response of Sma Superelastic Systems under Random Excitation[J]. J Sound Vib, 2000, 238(5): 893-901. DOI: 10.1006/jsvi.2000.3020 .
[13]
YUEX L, XIANGY L, XUY, et al. Global Dynamics of the Dry Friction Oscillator with Shape Memory Alloy[J]. Arch Appl Mech, 2020, 90(12): 2681-2692. DOI: 10.1007/s00419-020-01741-z .
[14]
YUEX L, XIANGY L, ZHANGY, et al. Global Analysis of Stochastic Bifurcation in Shape Memory Alloy Supporter with the Extended Composite Cell Coordinate System Method[J]. Chaos Interdiscip J Nonlinear Sci, 2021, 31(1): 013133. DOI: 10.1063/5.0024992 .
[15]
GUOR, LIUQ, LIJ L, et al. Response Statistics of a Shape Memory Alloy Oscillator with Random Excitation[J]. Appl Sci, 2021, 11(21): 10175. DOI: 10.3390/app112110175 .
[16]
BUM, LIJ, GUOR, et al. Dynamical Responses of a Gaussian Colored Noise-driven Shape Memory Alloy Oscillator with a Periodic Force[J]. Chaos Solitons Fractals, 2023, 166: 112966. DOI: 10.1016/j.chaos.2022.112966 .
DRESSLERM. Inertial Theories for Dilute Viscoelastic Polymer Blends with a Volume Preserving Microstructure[J]. J Non Newton Fluid Mech, 2012, 173/174: 40-48. DOI: 10.1016/j.jnnfm.2012.02.002 .
[19]
REYA D, HERRERA-VALENCIAE E. Liquid Crystal Models of Biological Materials and Silk Spinning[J]. Biopolymers, 2012, 97(6): 374-396. DOI: 10.1002/bip.21723 .
[20]
WANGX, SCHOENJ A, RENTSCHLERM E. A Quantitative Comparison of Soft Tissue Compressive Viscoelastic Model Accuracy[J]. J Mech Behav Biomed Mater, 2013, 20: 126-136. DOI: 10.1016/j.jmbbm.2013.01.007 .[PubMed]
[21]
ZHUW Q, CAIG Q. Random Vibration of Viscoelastic System Under Broad-band Excitations[J]. Int J Non Linear Mech, 2011, 46(5): 720-726. DOI: 10.1016/j.ijnonlinmec.2011.02.004 .
[22]
LINGQ, JINX L, HUANGZ L. Response and Stability of SDOF Viscoelastic System Under Wideband Noise Excitations[J]. J Frankl Inst, 2011, 348(8): 2026-2043. DOI: 10.1016/j.jfranklin.2011.05.019 .
[23]
DENGJ. Higher-order Stochastic Averaging for a SDOF Fractional Viscoelastic System Under Bounded Noise Excitation[J]. J Frankl Inst, 2017, 354(17): 7917-7945. DOI: 10.1016/j.jfranklin.2017.09.019 .
[24]
XUY, LIY G, LIUD. Response of Fractional Oscillators with Viscoelastic Term Under Random Excitation[J]. J Comput Nonlinear Dyn, 2014, 9(3): 031015. DOI: 10.1115/1.4026068 .
[25]
LIUQ, XUY, KURTHSJ. Bistability and Stochastic Jumps in an Airfoil System with Viscoelastic Material Property and Random Fluctuations[J]. Commun Nonlinear Sci Numer Simul, 2020, 84: 105184. DOI: 10.1016/j.cnsns.2020.105184 .