In this paper, a Holling-III predator-prey system with time delay under the homogeneous Neumann boundary conditions is studied. Firstly, by choosing the time delay as the bifurcation parameter, we study the effect of time delay on the stability of the positive equilibrium point of the system, thereby the conditions for generating Hopf bifurcations are obtained. Secondly, with the aid of partial functional differential equations of center manifold theory and standard method, the direction of the Hopf bifurcations and stability of periodic solutions of a bifurcation are gained. Finally, by using the numerical simulation function of MATLAB software, the theoretical results proposed in the paper are tested.
HOLINGC S. The Functional Response of Predators to Prey Density and Its role in mimicry and Population Regulation[J]. Memoirs of the Entomological Society of Canada, 1965, 97:5-60. 10.4039/entm9745fv .
[2]
KARAOGLUE, MERDANH. Hopf Bifurcations of a Ratio-dependent Predator-Prey Model Involving Two Discrete Maturation Time Delays[J]. Chaos Solitons Fractals, 2014, 68: 159-168. DOI: 10.1016/j.chaos.2014.07.011 .
[3]
HUD P, CAOH J. Stability and Bifurcation Analysis in a Predator-Prey System with Michaelis-Menten Type Predator Harvesting[J]. Nonlinear Anal Real World Appl, 2017, 33: 58-82. DOI: 10.1016/j.nonrwa.2016.05.010 .
[4]
HUX M, PRATAPA, ZHANGZ Z, et al. Hopf Bifurcation and Global Exponential Stability of an Epidemiological Smoking Model with Time Delay[J]. Alex Eng J, 2022, 61(3): 2096-2104. DOI: 10.1016/j.aej.2021.08.001 .
[5]
QIUS Y, MUC L, TUX Y. Dynamics for a Three-species Predator-prey Model with Density-dependent Motilities[J]. J Dyn Differ Equ, 2021, 35(1): 1-25. DOI: 10.1007/s10884-021-10020-6 .
GUOG H, ZHAOS H. Bifurcation Analysis for a Water-vegetation Model with Time Delay[J]. J Shanxi Univ Nat Sci Ed, 2023, 46(5): 1050-1057. DOI: 10.13451/j.sxu.ns.2022104 .
[8]
SUROSHA H, ALIDOUSTIJ, GHAZIANIR K. Stability and Hopf Bifurcation Analysis for a Three-species Food Chain Model with Fear and Two Different Delays[J]. Comput Appl Math, 2022, 41(3): 110. DOI: 10.1007/s40314-021-01727-9 .
[9]
DUL L, WANGM X. Hopf Bifurcation Analysis in the 1-D Lengyel-Epstein Reaction-Diffusion Model[J]. J Math Anal Appl, 2010, 366(2): 473-485. DOI: 10.1016/j.jmaa.2010.02.002 .
[10]
KASHYAPA J, ZHUQ X, SARMAHH K, et al. Dynamical Study of a Predator-Prey System with Michaelis-Menten Type Predator-harvesting[J]. Int J Biomath, 2023, 16(8): 2250135. DOI: 10.1142/s1793524522501352 .
[11]
YIF Q, WEIJ J, SHIJ P. Global Asymptotical Behavior of the Lengyel-Epstein Reaction-Diffusion System[J]. Appl Math Lett, 2009, 22(1): 52-55. DOI: 10.1016/j.aml.2008.02.003 .
WANGT T, TANGH P, MAZ H. Research on a Delay-induced Predator-prey System with Holling Ⅲ Functional Response and Habitat Complexity[J]. J Lanzhou Univ Nat Sci, 2018, 54(5): 682-690. DOI: 10.13885/j.issn.0455-2059.2018.05.016 .
[14]
XUX Y, MENGY, SHAOY Y. Hopf Bifurcation of a Delayed Predator-Prey Model with Allee Effect and Anti-predator Behavior[J]. Int J Biomath, 2023, 16(7): 2250125. DOI: 10.1142/s179352452250125x .
[15]
XIEY N, ZHAOJ, YANGR Z. Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator-Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator[J]. Mathematics, 2023, 11(9): 1996. DOI: 10.3390/math11091996 .
[16]
YANX P, SHIJ P. Stability Switches in a Logistic Population Model with Mixed Instantaneous and Delayed Density Dependence[J]. J Dyn Differ Equ, 2017, 29(1): 113-130. DOI: 10.1007/s10884-015-9432-3 .
SHENW. Stability and Hopf Bifurcation of a Time-delayed Predator-prey System with Holling-III Functional Responses[D].Lanzhou: Lanzhou Jiaotong University,2023. DOI:10.27205/d.cnki.gltec.2022.001082 .
YUANH L, WANGY D. The Hopf Bifurcation Periodic Solutions in the Nutrient-microorganism Model with Diffusion[J]. J Northwest Norm Univ Nat Sci, 2023, 59(4): 16-22. DOI: 10.16783/j.cnki.nwnuz.2023.04.003 .
JIAOS Y. Study on a Delay-diffusive Predator-prey Model with Refuge and Strong Allee Effect in Prey[J]. J Shanxi Univ Nat Sci Ed, 2021, 44(2): 234-240. DOI: 10.13451/j.sxu.ns.2020002 .
WANGY D, YUANH L. Hopf Bifurcation Analysis in the Lengyel-Epstein Reaction Diffusion System with Time Delay[J]. J Shandong Univ Nat Sci, 2023, 58(8): 92-103. DOI: 10.6040/j.issn.1671-9352.0.2022.539 .
MAY N, YUANH L. Bifurcation Analysis of a Class of Gierer-meinhardt Activation Inhibition Model with Time Delay[J]. Acta Math Sci, 2023, 43(6): 1774-1788.