1.Key Laboratory of Data Science and Intelligent Computing, School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China
2.School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China
This paper considers the generalized ∗-Sylvester matrix equation . By separating the real and imaginary parts of the matrices, the generalized ∗-Sylvester matrix equation is reformulated into the generalized Sylvester matrix equation under a certain condition, which can better construct numerical algorithms
FUJIOKAH, HARAS. State Covariance Assignment Problem with Measurement Noise: A Unified Approach Based on a Symmetric Matrix Equation[J]. Linear Algebra Appl, 1994, 203/204: 579-605. DOI: 10.1016/0024-3795(94)90215-1 .
[2]
YASUDAK, SKELTONR E. Assigning Controllability and Observability Gramians in Feedback Control[J]. J Guid Contr Dyn, 1991, 14(5): 878-885. DOI: 10.2514/3.20727 .
[3]
MAC F, YANT X. A Finite Iterative Algorithm for the General Discrete-Time Periodic Sylvester Matrix Equations [J] J Frankl Inst, 2022, 359(9): 4410-4432. DOI: 10.1016/j.jfranklin.2022.03.047 .
[4]
LIS H, MAC F. Factor Gradient Iterative Algorithm for Solving a Class of Discrete Periodic Sylvester Matrix Equations[J]. J Frankl Inst, 2022, 359(17): 9952-9970. DOI: 10.1016/j.jfranklin.2022.09.041 .
[5]
LIS H, MAC F. An Improved Gradient Neural Network for Solving Periodic Sylvester Matrix Equations[J]. J Frankl Inst, 2023, 360(6): 4056-4070. DOI: 10.1016/j.jfranklin.2023.02.019 .
[6]
DAIL. Singular Control Systems[M]. Berlin: Springer-Verlag, 1989.
[7]
DUANG R, PATTONR J. Eigenstructure Assignment in Descriptor Systems via Proportional Plus Derivative State Feedback[J]. Int J Contr, 1997, 68(5): 1147-1162. DOI: 10.1080/002071797223253 .
[8]
DUANG R. The Solution to the Matrix equation AV + BW = EVJ + R[J]. Appl Math Lett, 2004, 17(10): 1197-1202. DOI: 10.1016/j.aml.2003.05.012 .
[9]
FRANKP M. Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-based Redundancy—A Survey and some New Results[J]. Autom J IFAC, 1990, 26(3): 459-474. DOI: 10.1016/0005-1098(90)90018-D .
[10]
OOZAWAM, SOGABET, MIYATAKEY, et al. On a Relationship Between the T-congruence Sylvester Equation and the Lyapunov Equation[J]. J Comput Appl Math, 2018, 329: 51-56. DOI: 10.1016/j.cam.2017.05.044 .
[11]
SATAKEY, OOZAWAM, SOGABET, et al. Relation between the T-congruence Sylvester Equation and the Generalized Sylvester Equation[J]. Appl Math Lett, 2019, 96: 7-13. DOI: 10.1016/j.aml.2019.04.007 .
[12]
ZHANGH M, DINGF. On the Kronecker Products and Their Applications[J]. J Appl Math, 2013, 2013: 296185. DOI: 10.1155/2013/296185 .