Pseudodifferential operators are one of the core research objects in modern harmonic analysis and they have important applications in the theoretical study of partial differential equations. In this paper, we discuss the weak type endpoint estimates for pseudodifferential operators with symbols in Hörmander classes and get a sufficient condition such that these operators are of weak type (1,1) by employing the classical Calderón-Zygmund decomposition theory. Specifically, under the condition that the order of the symbol function , these operators are bounded from Lebesgue spaces to weak Lebesgue spaces. This research enriches the boundedness theory of pseudodifferential operators.
HÖRMANDERL. Pseudo-differential Operators and Hypoelliptic Equations[J]. Proc Sympos Pure Math, 1966, 10: 138-183. DOI: 10.1090/pspum/010/0383152 .
[4]
STEINE M, MURPHYT S. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals[M]. Princeton, N.J: Princeton University Press, 1993.
[5]
HOUNIEJ, DOS SANTOS KAPPR A. Pseudodifferential Operators on Local Hardy Spaces[J]. J FourierAnal Appl, 2009, 15(2):153-178. DOI: 10.1007/S00041-008-9021-5 .
[6]
ALVAREZJ, HOUNIEJ. Estimates for the Kernel and Continuity Properties of Pseudo-differential Operators[J]. Ark För Mat, 1990, 28(1): 1-22. DOI: 10.1007/BF02387364 .
[7]
KOHNJ J, NIRENBERGL. An Algebra of Pseudo-differential Operators[J]. Comm Pure Appl Math, 1965, 18(1/2): 269-305. DOI: 10.1002/cpa.3160180121 .
[8]
CALDERÓNA P, VAILLANCOURTR. A Class of Bounded Pseudo-differential Operators[J]. Proc Natl Acad Sci USA, 1972, 69(5): 1185-1187. DOI: 10.1073/pnas.69.5.1185 .
DENGY L, LONGS C. Ap(ψ) Weights, Pseudo-differential Operators and Their Commutators[J]. Acta Math Sci, 2021, 41(2): 313-325. DOI: 10.3969/j.issn.1003-3998.2021.02.004 .
[13]
DENGY L, LONGS C. Pseudodifferential Operators on Weighted Hardy Spaces[J]. J Funct Spaces, 2020, 2020: 7154125. DOI: 10.1155/2020/7154125 .
[14]
ÁLVAREZJ, HOUNIEJ, PÉREZC. A Pointwise Estimate for the Kernel of a Pseudo-differential Operator, with Applications[J]. Rev Un Mat Argentina, 1991,37:184-199. DOI: 10.33044/revuma .
[15]
ÁLVAREZJ, MILMANM. Vector Valued Inequalities for Strongly Singular Calderón-zygmund Operators[J]. Rev Mat Iberoam, 1986, 2(4): 405-426. DOI: 10.4171/rmi/42 .
[16]
DENGY L, CHENZ T, LONGS C. Double Weighted Commutators Theorem for Pseudo-differential Operators with Smooth Symbols[J]. Czechoslov Math J, 2021, 71(1): 173-190. DOI: 10.21136/CMJ.2020.0246-19 .