The completed Witt Lie algebra is a Lie algebra consisting of derivations of the algebra of formal series. We determine all 1/2-derivations of . We prove transposed Poisson structures of are nontrivial, and the general form of multiplication of transposed Poisson structures of is where . Similar results are also obtained for the generalized completed Witt Lie algebra.
ALBUQUERQUEH, BARREIROE, BENAYADIS, et al. Poisson Algebras and Symmetric Leibniz Bialgebra Structures on Oscillator Lie Algebras[J]. J Geom Phys, 2021, 160: 103939. DOI: 10.1016/j.geomphys.2020.103939 .
[5]
KUBOF. Non-commutative Poisson Algebra Structures on Affine Kac-moody Algebras[J]. J Pure Appl Algebra, 1998, 126(1/2/3): 267-286. DOI: 10.1016/s0022-4049(96)00141-7 .
[6]
BAIC M, BAIR P, GUOL, et al. Transposed Poisson Algebras, Novikov-poisson Algebras and 3-lie Algebras[J]. J Algebra, 2023, 632: 535-566. DOI: 10.1016/j.jalgebra.2023.06.006 .
[7]
FERREIRAB L M, KAYGORODOVI, LOPATKINV. 1 2 -Derivations of Lie Algebras and Transposed Poisson Algebras[J]. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2021, 115(3). DOI: 10.1007/s13398-021-01088-2 .
[8]
YUANL M, HUAQ Y. 1 2 -(Bi)Derivations and Transposed Poisson Algebra Structures on Lie Algebras[J]. Linear Multilinear Algebra, 2022, 70(22): 7672-7701. DOI: 10.1080/03081087.2021.2003287 .
[9]
KAYGORODOVI, LOPATKINV, ZHANGZ R. Transposed Poisson Structures on Galilean and Solvable Lie Algebras[J]. J Geom Phys, 2023, 187: 104781. DOI: 10.1016/j.geomphys.2023.104781 .
[10]
KAYGORODOVI, KHRYPCHENKOM. Transposed Poisson Structures on Block Lie Algebras and Superalgebras[J]. Linear Algebra Appl, 2023, 656: 167-197. DOI: 10.1016/j.laa.2022.09.024 .
[11]
KAYGORODOVI, KHRYPCHENKOM. Transposed Poisson Structures on Witt Type Algebras[J]. Linear Algebra Appl, 2023, 665: 196-210. DOI: 10.1016/j.laa.2023.02.003 .
[12]
WUY P, XUY, YUANL M. Derivations and Automorphism Group of Completed Witt Lie Algebra[J]. Algebra Colloq, 2012, 19(3): 581-590. DOI: 10.1142/s1005386712000454 .