The global Hölder estimate of weak solutions for a class of Dirichlet boundary value problems of elliptic equations was considered. This article first proves the global higher order integrability, and then gives several lemmas that prove the main conclusions. By establishing suitable comparative estimates and using processing tools such as the Young inequality and the Hölder inequality, the global Hölder estimate of weak solutions for a class of Dirichlet boundary value problems of elliptic equations was obtained through covering iterative discussions.
ACERBIE, MINGIONEG. Regularity Results for a Class of Functionals with Non-standard Growth[J]. Arch Ration Mech Anal, 2001, 156(2): 121-140. DOI: 10.1007/s002050100117 .
RŮŽIČKAM. Electrorheological Fluids: Modeling and Mathematical Theory[M]. New York: Springer, 2000.
[4]
CHENY M, LEVINES, RAOM. Variable Exponent, Linear Growth Functionals in Image Restoration[J]. SIAM J Appl Math, 2006, 66(4): 1383-1406. DOI: 10.1137/050624522 .
[5]
LIF, LIZ B, PIL. Variable Exponent Functionals in Image Restoration[J]. Appl Math Comput, 2010, 216(3): 870-882. DOI: 10.1016/j.amc.2010.01.094 .
[6]
JIKOVV V, KOZLOVS M, OLEINIKO A. Homogenization of Differential Operators and Integral Functionals[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. DOI: 10.1007/978-3-642-84659-5 .
[7]
ZHIKOVV V. Meyers Type Estimates for the Solution of a Nonlinear Stokes System [in Russian]. Differ Uravn, 1997, 33(1): 107-114.
[8]
ZHIKOVV V. On Lavrentiev's Phenomenon[J]. Russ J Math Phys, 1995, 3: 249-269.
[9]
ZHIKOVV V. On some Variational Problems[J]. Russ J Math Phys, 1997, 5: 105-116.
[10]
DIENINGL, HÄSTÖP, NEKVINDAA. Open Problems in Variable Exponent Lebesgue and Sobolev Spaces[C]//FSDONA04 Proceedings. Prague: Academy of Sciences of the Czech Republic, 2004, 66: 38-58.
[11]
HARJULEHTOP, HÄSTÖP, LÊÚ V, et al. Overview of Differential Equations with Non-standard Growth[J]. Nonlinear Anal Theory Meth Appl, 2010, 72(12): 4551-4574. DOI: 10.1016/j.na.2010.02.033
[12]
SAMKOS. On a Progress in the Theory of Lebesgue Spaces with Variable Exponent: Maximal and Singular Operators[J]. Integr Transforms Spec Funct, 2005, 16(5/6): 461-482. DOI: 10.1080/10652460412331320322 .
[13]
DIENINGL. Lebesgue and Sobolev Spaces with Variable Exponents[M]. Berlin: Springer, 2011.
[14]
ACERBIE, MINGIONEG. Gradient Estimates for The p(x)-Laplacean System[J]. J Für Die Reine Und Angew Math Crelles J, 2005, 2005(584): 117-148. DOI: 10.1515/crll.2005.2005.584.117 .
[15]
COSCIAA, MINGIONEG. Hölder Continuity of the Gradient of p(x)-Harmonic Mappings[J]. C. R. Acad. Sci. Paris Sér. I Math, 1999, 328(4): 363-368.
[16]
FANX L. Global C1, αRegularity for Variable Exponent Elliptic Equations in Divergence form[J]. J Differ Equ, 2007, 235(2): 397-417. DOI: 10.1016/j.jde.2007.01.008 .
[17]
YAOF. Weighted Gradient Estimates for the General Elliptic p(x)-Laplacian Equations[J]. J Math Anal Appl, 2014, 415(2): 644-660. DOI: 10.1016/J.JMAA.2014.01.082 .
[18]
BYUNS S, LEEH S. Calderón-Zygmund Estimates for Elliptic Double Phase Problems with Variable Exponents[J]. J Math Anal Appl, 2021, 501(1): 124015. DOI: 10.1016/j.jmaa.2020.124015
[19]
LIY, YAOF P. Besov Regularity Estimates for the Elliptic p(x)-Laplacian Equation with the Logarithmic Growth[J]. J Math Anal Appl, 2021, 498(2): 124974. DOI: 10.1016/j.jmaa.2021.124974 .
[20]
ZHANGC, ZHOUS L. Hölder Regularity for the Gradients of Solutions of the Strong p(x)-Laplacian[J]. J Math Anal Appl, 2012, 389(2): 1066-1077. DOI: 10.1016/j.jmaa.2011.12.047 .
[21]
YAOF P. Local Hölder Regularity of the Gradients for the Elliptic-Laplacian Equation[J]. Nonlinear Anal, 2013, 78: 79-85. DOI: 10.1016/j.na.2012.09.017 .
[22]
YAOF P. Local Hölder Estimates for General Elliptic p(x)-Laplacian Equations[J]. J Math Inequal, 2014(2): 239-250. DOI: 10.7153/jmi-08-16 .
[23]
YAOF P. Hölder Estimates for the Elliptic p(x)-Laplacian Equation with the Logarithmic Function[J]. Appl Anal, 2022, 101(8): 3048-3064. DOI: 10.1080/00036811.2020.1836348 .
TONGY X, ZHENGS Z, YUH Y. Local H(o)Lder Continuity of the Gradients of Weak Solutions to A-harmonic Equation with Variable Exponents[J]. Acta Math Sci, 2015, 35(4): 656-667. DOI: 10.3969/j.issn.1003-3998.2015.04.003 .
TONGY X, GUOY M, GUJ T. Global BMO Estimate for the Gradient of Weak Solutions to a Class of Elliptic Obstacle Problems[J]. Acta Math Sci, 2023, 43(1): 159-168. DOI:10.3969/j.issn.1003-3998.2023.01.014 .
[28]
YAOF P. Local Hölder Regularity for the General Non-homogeneous Parabolic Equations[J]. J Math Anal Appl, 2023, 519(1): 126746. DOI: 10.1016/j.jmaa.2022.126746 .