College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Show less
文章历史+
Received
Accepted
Published
2023-06-30
2024-01-21
Issue Date
2025-06-13
PDF (2732K)
摘要
针对传统算法在低信噪比、小快拍、信源相干等情况下,波达方向(Directional of Arrival,DOA)估计精度低的问题,提出了一种基于正交三角分解(Orthogonal Triangular Decomposition,QR)的正则化回溯匹配追踪算法(QR-Regularized Backtracking Matching Pursuit,QR-RBMP)。该算法首先对感知矩阵进行QR分解,以增大感知矩阵的独立性;再利用正则化思想和回溯机制优化匹配追踪算法,来提高信号重构精度;正则化思想对匹配追踪算法初次选择的原子进行二次筛选,选出最相关且能量最大的相关原子,回溯思想对正则化选择得到的原子进行再次筛选,删除不正确的原子,提高所选择原子的正确性,进而提高了匹配追踪算法的重构精度。最后得到重构的信号,信号非零元素所对应的位置即为DOA估计的结果。通过一系列仿真实验,并与多重信号分类算法(Multiple Signal Classification,MUSIC)、正则化正交匹配追踪算法(Regularized Orthogonal Matching Pursuit,ROMP)、基于子空间追踪算法(Subspace Tracking Algorithm,SP)、无平方根方法的SP算法(ISP)以及能量排序的回溯正则化匹配追踪算法(Backtracking Regularization Matching Pursuit for Energy Sorting,ESBRMP)估计方法基于均方根误差(Root Mean Square Error,RMSE)、分辨概率(Probability of Resolution,POR)进行对比分析。结果表明该算法在相同条件下均方根误差比现有最优方法降低了约42%,成功分辨率提高了8%。
HUN, YEZ F, XUX, et al. DOA Estimation for Sparse Array via Sparse Signal Reconstruction[J]. IEEE Trans Aerosp Electron Syst, 2013, 49(2): 760-773. DOI: 10.1109/TAES.2013.6494379 .
[2]
KRIMH, VIBERGM. Two Decades of Array Signal Processing Research: The Parametric Approach[J]. IEEE Signal Process Mag, 1996, 13(4): 67-94. DOI: 10.1109/79.526899 .
[3]
SCHMIDTR. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans Anntenas Propag, 1986, 34(3): 276-280. DOI: 10.1109/TAP.1986.1143830 .
[4]
ROYR, KAILATHT. ESPRIT-estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Trans Acoust Speech Signal Process, 1989, 37(7): 984-995. DOI: 10.1109/29.32276 .
[5]
STOICAP, NEHORAIA. Performance Study of Conditional and Unconditional Direction-of-arrival Estimation[J]. IEEE Trans Acoust Speech Signal Process, 1990, 38(10): 1783-1795. DOI: 10.1109/29.60109 .
[6]
TSAKALIDESP, NIKIASC L. Maximum Likelihood Localization of Sources in Noise Modeled as a Stable Process[J]. IEEE Trans Signal Process, 1995, 43(11): 2700-2713. DOI: 10.1109/78.482119 .
[7]
OTTERSTENB, VIBERGM, STOICAP, et al. Exact and Large Sample Maximum Likelihood Techniques for Parameter Estimation and Detection in Array Processing[M]//HAYKIN S, LITVA J, SHEPHERD T J. Radar Array Processing. Berlin, Heidelberg: Springer, 1993: 99-151. DOI: 10.1007/978-3-642-77347-1_4 .
[8]
HAMZAR, BUCKLEYK. Second-order Statistical Analysis of Totally Weighted Subspace Fitting Methods[J]. IEEE Trans Signal Process, 1994, 42(9): 2520-2524. DOI: 10.1109/78.317877 .
[9]
ÇALıKS K. UAV Path Planning with Multiagent Ant Colony System Approach[C]//2016 24th Signal Processing and Communication Application Conference (SIU). Zonguldak, Turkey: IEEE, 2016: 1409-1412. DOI: 10.1109/SIU.2016.7496013 .
[10]
WAGNERM, PARKY, GERSTOFTP. Gridless DOA Estimation and Root-MUSIC for Non-uniform Linear Arrays[J]. IEEE Trans Signal Process, 2021, 69: 2144-2157. DOI: 10.1109/TSP.2021.3068353 .
[11]
TOTAR, HOSSAINM S. Multiple Near-field Sources Localization by Optimal Beamformer Using Minimum Norm Method[C]//2021 International Conference on Electronics, Communications and Information Technology (ICECIT). Khulna, Bangladesh: IEEE, 2021: 1-4. DOI: 10.1109/ICECIT54077.2021.9641373 .
[12]
QIB B, LIW. An Improved Multiple-toeplitz Matrices Reconstruction Algorithm for DOA Estimation of Coherent Signals[J]. Radioengineering, 2021, 30(3): 532-539. DOI: 10.13164/re.2021.0532 .
[13]
DONOHOD L. Compressed Sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582 .
[14]
WANGH B. Compressed Sensing: Theory and Applications[J]. J Phys: Conf Ser, 2023, 2419(1): 012042. DOI: 10.1088/1742-6596/2419/1/012042 .
[15]
MALLOYM L, NOWAKR D. Near-optimal Adaptive Compressed Sensing[J]. IEEE Trans Inf Theory, 2014, 60(7): 4001-4012. DOI: 10.1109/TIT.2014.2321552 .
CHENJ, ZHUANGY Y, YANGD, et al. Implementation of Improved Sorted QR Decomposition on FPGA[J]. J Hunan Univ Nat Sci, 2022, 49(10): 8-16. DOI: 10.16339/j.cnki.hdxbzkb.2022351 .
[18]
CANDESE J, ROMBERGJ, TAOT. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Trans Inf Theory, 2006, 52(2): 489-509. DOI: 10.1109/TIT.2005.862083 .
[19]
LIY Q, WANGJ. Time-frequency Analysis of Seismic Data Based on Basis Pursuit[C]//2014 12th International Conference on Signal Processing (ICSP). Hangzhou, China: IEEE, 2014: 175-179. DOI: 10.1109/ICOSP.2014.7014992 .
[20]
TROPPJ A, GILBERTA C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J]. IEEE Trans Inf Theory, 2007, 53(12): 4655-4666. DOI: 10.1109/TIT.2007.909108 .
[21]
NEEDELLD, VERSHYNINR. Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit[J]. Found Comput Math, 2009, 9(3): 317-334. DOI: 10.1007/s10208-008-9031-3 .
[22]
DAIW, MILENKOVICO. Subspace Pursuit for Compressive Sensing Signal Reconstruction[J]. IEEE Trans Inf Theory, 2009, 55(5): 2230-2249. DOI: 10.1109/TIT.2009.2016006 .
[23]
DOT T, GANL, NGUYENN, et al. Sparsity Adaptive Matching Pursuit Algorithm for Practical Compressed Sensing[C]//2008 42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 2008: 581-587. DOI: 10.1109/ACSSC.2008.5074472 .
[24]
NEEDELLD, TROPPJ A. CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples[J]. Appl Comput Harmon Anal, 2009, 26(3): 301-321. DOI: 10.1016/j.acha.2008.07.002 .
[25]
ZHAOJ, BAIX. An Improved Orthogonal Matching Pursuit Based on Randomly Enhanced Adaptive Subspace Pursuit[C]//2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). Kuala Lumpur, Malaysia: IEEE, 2017: 437-441. DOI: 10.1109/APSIPA.2017.8282071 .
[26]
ZHANGC J. An Orthogonal Matching Pursuit Algorithm Based on Singular Value Decomposition[J]. Circuits Syst Signal Process, 2020, 39(1): 492-501. DOI: 10.1007/s00034-019-01182-2 .
[27]
LIUY Z, SONGT, ZHUANGY Q. A High-throughput Subspace Pursuit Processor for ECG Recovery in Compressed Sensing Using Square-root-free MGS QR Decomposition[J]. IEEE Trans Very Large Scale Integr VLSI Syst, 2020, 28(1): 174-187. DOI: 10.1109/TVLSI.2019.2936867 .
[28]
LIL X, XUD F, PENGH P, et al. Reconstruction of Complex Network Based on the Noise via QR Decomposition and Compressed Sensing[J]. Sci Rep, 2017, 7(1): 15036. DOI: 10.1038/s41598-017-15181-3 .
[29]
ZHANGH F, XIAOS G, ZHOUP. A Matching Pursuit Algorithm for Backtracking Regularization Based on Energy Sorting[J]. Symmetry, 2020, 12(2): 231. DOI: 10.3390/sym12020231 .
[30]
ZHENGZ, YANGC L, WANGW Q, et al. Robust DOA Estimation Against Mutual Coupling with Nested Array[J]. IEEE Signal Process Lett, 2020, 27: 1360-1364. DOI: 10.1109/LSP.2020.3011314 .
[31]
JIANGG J, YANGY L. Synthetic Sparse Nested Array with Extended Aperture and Reduced Mutual Coupling for DOA Estimation[J]. Signal Process, 2023, 204: 108849. DOI: 10.1016/j.sigpro.2022.108849 .
[32]
CANDÈSE, ROMBERGJ. Sparsity and Incoherence in Compressive Sampling[J]. Inverse Probl Int J Inverse Probl Inverse Meth Comput Inversion Data, 2007, 23(3): 969-985. DOI:10.1088/0266-5611/23/3/008 .