MATTHEWSM R, ANDERSONB P, HALJANP C, et al. Watching a Superfluid Untwist Itself: Recurrence of Rabi Oscillations in a Bose-einstein Condensate[J]. Phys Rev Lett, 1999, 83(17): 3358-3361. DOI: 10.1103/physrevlett.83.3358 .
[2]
NICKLASE, STROBELH, ZIBOLDT, et al. Rabi Flopping Induces Spatial Demixing Dynamics[J]. Phys Rev Lett, 2011, 107(19): 193001. DOI: 10.1103/PhysRevLett.107.193001 .
[3]
HAMNERC, ZHANGY P, CHANGJ J, et al. Phase Winding a Two-component Bose-Einstein Condensate in an Elongated Trap: Experimental Observation of Moving Magnetic Orders and Dark-bright Solitons[J]. Phys Rev Lett, 2013, 111(26): 264101. DOI: 10.1103/PhysRevLett.111.264101 .
[4]
WANGY X, TANGJ J, ZHOUB Q, et al. Rabi Oscillation of Spin-polarized Rubidium in the Spin-exchange Relaxation-free Regime[J]. Opt Express, 2022, 30(19): 35071-35084. DOI: 10.1364/OE.471475 .
[5]
PAGELZ, ZHONGW C, PARKERR H, et al. Symmetric Bloch Oscillations of Matter Waves[J]. Phys Rev A, 2020, 102(5): 053312. DOI: 10.1103/physreva.102.053312 .
[6]
PANS Z, HUC X, ZHANGW B, et al. Rabi Oscillations in a Stretching Molecule[J]. Light Sci Appl, 2023, 12: 35. DOI: 10.1038/s41377-023-01075-9 .
[7]
LIUG H, ZHANGX L, ZHANGX, et al. Spin-orbit Rabi Oscillations in Optically Synthesized Magnetic Fields[J]. Light Sci Appl, 2023, 12(1): 205. DOI: 10.1038/s41377-023-01238-8 .
[8]
WILLIAMSJ, WALSERR, COOPERJ, et al. Excitation of a Dipole Topological State in a Strongly Coupled Two-component Bose-Einstein Condensate[J]. Phys Rev A, 2000, 61(3): 033612. DOI: 10.1103/physreva.61.033612 .
[9]
PARKQ H, EBERLYJ H. Nontopological Vortex in a Two-component Bose-Einstein Condensate[J]. Phys Rev A, 2004, 70(2): 021602. DOI: 10.1103/physreva.70.021602 .
[10]
KASAMATSUK, TSUBOTAM, UEDAM. Vortex Molecules in Coherently Coupled Two-component Bose-Einstein Condensates[J]. Phys Rev Lett, 2004, 93(25): 250406. DOI: 10.1103/PhysRevLett.93.250406 .
[11]
SUSANTOH, KEVREKIDISP G, MALOMEDB A, et al. Effects of Time-periodic Linear Coupling on Two-component Bose–Einstein Condensates in Two Dimensions[J]. Phys Lett A, 2008, 372(10): 1631-1638. DOI: 10.1016/j.physleta.2007.09.073 .
[12]
LEEC H. Universality and Anomalous Mean-field Breakdown of Symmetry-breaking Transitions in a Coupled Two-component Bose-Einstein Condensate[J]. Phys Rev Lett, 2009, 102(7): 070401. DOI: 10.1103/PhysRevLett.102.070401 .
[13]
SABBATINIJ, ZUREKW H, DAVISM J. Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate[J]. Phys Rev Lett, 2011, 107(23): 230402. DOI: 10.1103/PhysRevLett.107.230402 .
[14]
DRORN, MALOMEDB A, ZENGJ H. Domain Walls and Vortices in Linearly Coupled Systems[J]. Phys Rev E, 2011, 84(4): 046602. DOI: 10.1103/physreve.84.046602 .
[15]
BERNIERN R, DALLA TORREE G, DEMLERE. Unstable Avoided Crossing in Coupled Spinor Condensates[J]. Phys Rev Lett, 2014, 113(6): 065303. DOI: 10.1103/PhysRevLett.113.065303 .
[16]
USUIA, TAKEUCHIH. Rabi-coupled Countersuperflow in Binary Bose-Einstein Condensates[J]. Phys Rev A, 2015, 91(6): 063635. DOI: 10.1103/physreva.91.063635 .
[17]
SHIBATAK, TORIIA, SHIBAYAMAH, et al. Interaction Modulation in a Long-lived Bose-Einstein Condensate by Rf Coupling[J]. Phys Rev A, 2019, 99: 013622. DOI: 10.1103/physreva.99.013622 .
[18]
CHENT R, SHIBATAK, ETO Y, et al. Faraday Patterns Generated by Rabi Oscillation in a Binary Bose-Einstein Condensate[J]. Phys Rev A, 2019, 100(6): 063610. DOI: 10.1103/physreva.100.063610 .
[19]
STOOFH T, VLIEGENE, KHAWAJA UAL. Monopoles in an Antiferromagnetic Bose-einstein Condensate[J]. Phys Rev Lett, 2001, 87(12): 120407. DOI: 10.1103/PhysRevLett.87.120407 .
[20]
PIETILÄV, MÖTTÖNENM. Non-abelian Magnetic Monopole in a Bose-Einstein Condensate[J]. Phys Rev Lett, 2009, 102(8): 080403. DOI: 10.1103/PhysRevLett.102.080403 .
[21]
PIETILÄV, MÖTTÖNENM. Creation of Dirac Monopoles in Spinor Bose-einstein Condensates[J]. Phys Rev Lett, 2009, 103(3): 030401. DOI: 10.1103/PhysRevLett.103.030401 .
[22]
RAYM W, RUOKOKOSKIE, KANDELS, et al. Observation of Dirac Monopoles in a Synthetic Magnetic Field[J]. Nature, 2014, 505(7485): 657-660. DOI: 10.1038/nature12954 .
[23]
RAYM W, RUOKOKOSKIE, TIUREVK, et al. Observation of Isolated Monopoles in a Quantum Field[J]. Science, 2015, 348(6234): 544-547. DOI: 10.1126/science.1258289 .
[24]
LEEW, GHEORGHEA H, TIUREVK, et al. Synthetic Electromagnetic Knot in a Three-dimensional Skyrmion[J]. Sci Adv, 2018, 4(3): eaao3820. DOI: 10.1126/sciadv.aao3820 .
[25]
TIUREVK, OLLIKAINENT, KUOPANPORTTIP, et al. Three-dimensional Skyrmions in Spin-2 Bose–Einstein Condensates[J]. New J Phys, 2018, 20(5): 055011. DOI: 10.1088/1367-2630/aac2a8 .
[26]
LUOH B, LIL, LIUW M. Three-dimensional Skyrmions with Arbitrary Topological Number in a Ferromagnetic Spin-1 Bose-einstein Condensate[J]. Sci Rep, 2019, 9: 18804. DOI: 10.1038/s41598-019-54856-x .
[27]
KAWAGUCHIY, NITTAM, UEDAM. Knots in a Spinor Bose-einstein Condensate[J]. Phys Rev Lett, 2008, 100(18): 180403. DOI: 10.1103/physrevlett.100.180403 .
HEY Z, JIL J, WANGY Z, et al. Geometric Control of Collective Spontaneous Emission[J]. Phys Rev Lett, 2020, 125(21): 213602. DOI: 10.1103/PhysRevLett.125.213602 .
[30]
LYUBAROVM, LUMERY, DIKOPOLTSEVA, et al. Amplified Emission and Lasing in Photonic Time Crystals[J]. Science, 2022, 377(6604): 425-428. DOI: 10.1126/science.abo3324 .
[31]
KAISERM, GLASERC, LEYL Y, et al. Cavity-driven Rabi Oscillations between Rydberg States of Atoms Trapped on a Superconducting Atom Chip[J]. Phys Rev Research, 2022, 4(1): 013207. DOI: 10.1103/physrevresearch.4.013207 .
[32]
ANNB M, KESSELSW, STEELEG A. Sideband Transitions in a Two-mode Josephson Circuit Driven beyond the Rotating-wave Approximation[J]. Phys Rev Research, 2021, 3(3): 033004. DOI: 10.1103/physrevresearch.3.033004 .
[33]
KHEZRIM, OPREMCAKA, CHENZ J, et al. Measurement-induced State Transitions in a Superconducting Qubit: Within the Rotating-wave Approximation[J]. Phys Rev Applied, 2023, 20(5): 054008. DOI: 10.1103/physrevapplied.20.054008 .