We studied the chiral edge currents of fermions in a Bose-Fermi mixture tube model, where the Bose-Fermi interaction causes the modulation of the density of bosons and fermions. Thus we focused on the influence of different boson states (superfluid or Mott-insulator) on the chiral edge currents of fermions when the density is perturbed. Based on the exact diagonalization and density-matrix renormalization groups, the Fermi currents sequence parameters of the ground state of the system were calculated. We found that when the boson is in a superfluid state, the Bose-Fermi interaction drives the Fermi edge currents from Meissner to vortex vacuum phase separation (V-PS1) and vortex full-band phase separation (V-PS2). When the boson is in the Mott-insulator, the Bose-Fermi interaction drives the Meissner currents into another vortex phase separation (V-PS3). Finally, the currents phase diagram of the system as a function of interaction is shown. The discovery of three new currents phases enriches the variety of currents phases and provides theoretical support for further research on singular chiral currents induced by the coexistence of artificial gauge fields and interactions.
STUHLB K, LUH I, AYCOCKL M, et al. Visualizing Edge States with an Atomic Bose Gas in the Quantum Hall Regime[J]. Science, 2015, 349(6255): 1514-1518. DOI: 10.1126/science.aaa8515 .
[2]
CAOB, GRASST, SOLOMONG, et al. Optical Flux Pump in the Quantum Hall Regime[J]. Phys Rev B, 2021, 103(24): L241301. DOI: 10.1103/physrevb.103.l241301 .
[3]
LANGEF, EJIMAS, FUJIMOTOJ, et al. Generation of Current Vortex by Spin Current in Rashba Systems[J]. Phys Rev Lett, 2021, 126(15): 157202. DOI: 10.1103/PhysRevLett.126.157202 .
[4]
GALITSKIV, SPIELMANI B. Spin-Orbit Coupling in Quantum Gases[J]. Nature, 2013, 494: 49-54. DOI: 10.1038/nature11841 .
[5]
ZHAIH. Degenerate Quantum Gases with Spin-orbit Coupling: a Review[J]. Rep Prog Phys, 2015, 78(2): 026001. DOI: 10.1088/0034-4885/78/2/026001 .
[6]
WANGP J, YUZ Q, FUZ K, et al. Spin-orbit Coupled Degenerate Fermi Gases[J]. Phys Rev Lett, 2012, 109(9): 095301. DOI: 10.1103/PhysRevLett.109.095301 .
[7]
CHEUKL W, SOMMERA T, HADZIBABICZ, et al. Spin-injection Spectroscopy of a Spin-orbit Coupled Fermi Gas[J]. Phys Rev Lett, 2012, 109(9): 095302. DOI: 10.1103/PhysRevLett.109.095302 .
KOLKOWITZS, BROMLEYS L, BOTHWELLT, et al. Spin-orbit-coupled Fermions in an Optical Lattice Clock[J]. Nature, 2017, 542(7639): 66-70. DOI: 10.1038/nature20811 .
[10]
CAMPBELLS L, HUTSONR B, MARTIG E, et al. A Fermi-degenerate Three-dimensional Optical Lattice Clock[J]. Science, 2017, 358(6359): 90-94. DOI: 10.1126/science.aam5538 .
[11]
MANCINIM, PAGANOG, CAPPELLINIG, et al. Observation of Chiral Edge States with Neutral Fermions in Synthetic Hall Ribbons[J]. Science, 2015, 349(6255): 1510-1513. DOI: 10.1126/science.aaa8736 .
[12]
CELIA, MASSIGNANP, RUSECKASJ, et al. Synthetic Gauge Fields in Synthetic Dimensions[J]. Phys Rev Lett, 2014, 112(4): 043001. DOI: 10.1103/PhysRevLett.112.043001 .
[13]
SEDOVD D, SHIROBOKOVV, IORSHI V, et al. Cavity-induced Chiral Edge Currents and Spontaneous Magnetization in Two-dimensional Electron Systems[J]. Phys Rev B, 2022, 106(20): 205114. DOI: 10.1103/physrevb.106.205114 .
[14]
LIVIL F, CAPPELLINIG, DIEMM, et al. Synthetic Dimensions and Spin-orbit Coupling with an Optical Clock Transition[J]. Phys Rev Lett, 2016, 117(22): 220401. DOI: 10.1103/PhysRevLett.117.220401 .
[15]
ATALAM, AIDELSBURGERM, LOHSEM, et al. Observation of Chiral Currents with Ultracold Atoms in Bosonic Ladders[J]. Nat Phys, 2014, 10: 588-593. DOI: 10.1038/nphys2998 .
[16]
JENSENK, ZUGENMAIERM, ARNBAKJ, et al. Detection of Low-conductivity Objects Using Eddy Current Measurements with an Optical Magnetometer[J]. Phys Rev Research, 2019, 1(3): 033087. DOI: 10.1103/physrevresearch.1.033087 .
[17]
PIRAUDM, HEIDRICH-MEISNERF, MCCULLOCHI P, et al. Vortex and Meissner Phases of Strongly Interacting Bosons on a Two-leg Ladder[J]. Phys Rev B, 2015, 91(14): 140406. DOI: 10.1103/physrevb.91.140406 .
[18]
BUSERM, HUBIGC, SCHOLLWÖCKU, et al. Interacting Bosonic Flux Ladders with a Synthetic Dimension: Ground-state Phases and Quantum Quench Dynamics[J]. Phys Rev A, 2020, 102(5): 053314. DOI: 10.1103/physreva.102.053314 .
[19]
KIEFER-EMMANOUILIDISM, SIRKERJ. Current Reversals and Metastable States in the Infinite Bose-Hubbard Chain with Local Particle Loss[J]. Phys Rev A, 2017, 96(6): 063625. DOI: 10.1103/physreva.96.063625 .
[20]
TITVINIDZEI, SNOEKM, HOFSTETTERW. Supersolid Bose-fermi Mixtures in Optical Lattices[J]. Phys Rev Lett, 2008, 100(10): 100401. DOI: 10.1103/PhysRevLett.100.100401 .
[21]
HÉBERTF, BATROUNIG G, ROYX, et al. Supersolids in One-dimensional Bose-fermi Mixtures[J]. Phys Rev B, 2008, 78(18): 184505. DOI: 10.1103/physrevb.78.184505 .
[22]
LEWENSTEINM, SANTOSL, BARANOVM A, et al. Atomic Bose-fermi Mixtures in an Optical Lattice[J]. Phys Rev Lett, 2004, 92(5): 050401. DOI: 10.1103/PhysRevLett.92.050401 .
[23]
BÜCHLERH P, BLATTERG. Supersolid versus Phase Separation in Atomic Bose-Fermi Mixtures[J]. Phys Rev Lett, 2008, 91(13):130404. DOI: 10.1103/PhysRevLett.91.130404 .
[24]
LEWENSTEINM, SANTOSL, BARANOVM A, et al. Atomic Bose-fermi Mixtures in an Optical Lattice[J]. Phys Rev Lett, 2004, 92(5): 050401. DOI: 10.1103/physrevlett.92.050401 .
[25]
POLLETL, TROYERM, VAN HOUCKEK, et al. Phase Diagram of Bose-fermi Mixtures in One-dimensional Optical Lattices[J]. Phys Rev Lett, 2006, 96(19): 190402. DOI: 10.1103/PhysRevLett.96.190402 .
[26]
NINGW Q, GUS J, CHENY G, et al. Concurrence and Fidelity of a Bose-fermi Mixture in a One-dimensional Optical Lattice[J]. J Phys Condens Matter, 2008, 20(23): 235236. DOI: 10.1088/0953-8984/20/23/235236 .
[27]
QUINTEIRO ROSENG F, TAMBORENEAP I, KUHNT. Interplay between Optical Vortices and Condensed Matter[J]. Rev Mod Phys, 2022, 94(3): 035003. DOI: 10.1103/revmodphys.94.035003 .
[28]
DEURETZBACHERF, BECKERD, BJERLINJ, et al. Spin-chain Model for Strongly Interacting One-dimensional Bose-fermi Mixtures[J]. Phys Rev A, 2017, 95(4): 043630. DOI: 10.1103/physreva.95.043630 .
[29]
ZENGT S. Fractional Quantum Hall Effect of Bose-fermi Mixtures[J]. Phys Rev B, 2021, 103(20): L201118. DOI: 10.1103/physrevb.103.l201118 .
[30]
SINGHM, ORSOG. Enhanced Visibility of the Fulde-Ferrel-Larkin-Ovchinnikov State in One-dimensional Bose-fermi Mixtures near the Immiscibility Point[J]. Phys Rev Research, 2020, 2(2): 023148. DOI: 10.1103/physrevresearch.2.023148 .
[31]
XUZ F, LIX P, ZOLLERP, et al. Spontaneous Quantum Hall Effect in an Atomic Spinor Bose-fermi Mixture[J]. Phys Rev Lett, 2015, 114(12): 125303. DOI: 10.1103/PhysRevLett.114.125303 .
[32]
KLIRONOMOSF D, TSAIS W. Pairing and Density-wave Phases in Boson-fermion Mixtures at Fixed Filling[J]. Phys Rev Lett, 2007, 99(10): 100401. DOI: 10.1103/PhysRevLett.99.100401 .
[33]
GÜNTERK, STÖFERLET, MORITZH, et al. Bose-fermi Mixtures in a Three-dimensional Optical Lattice[J]. Phys Rev Lett, 2006, 96(18): 180402. DOI: 10.1103/physrevlett.96.180402 .
[34]
MERINGA, FLEISCHHAUERM. One-dimensional Bose-fermi-Hubbard Model in the Heavy-fermion Limit[J]. Phys Rev A, 2008, 77(2): 023601. DOI: 10.1103/physreva.77.023601 .
[35]
CALVANESE STRINATIM, CORNFELDE, ROSSINID, et al. Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders[J]. Phys Rev X, 2017, 7(2): 021033. DOI: 10.1103/physrevx.7.021033 .
[36]
HANZ Y, KIMK S, KIVELSONS A, et al. Two-fluid Theory of Composite Bosons and Fermions and the Quantum Hall Proximity Effect[J]. Phys Rev B, 2023, 108(19): 195117. DOI: 10.1103/physrevb.108.195117 .