We introduced the concepts of G-chain continuous poin and G-limit shadowing property in metric G-space. By using the properties of equivariant map and commutative group, we studied the dynamical properties of G-chain continuous poin and G-limit shadowing property, and obtained the following results. (1)The equivalent condition is given for every point to be G-chain continuous. That is, the map is G-equicontinuous and has G-shadowing property in metric G-space; (2) G-expansivity and G-shadowing property imply G-limit shadowing property. These results enrich the theory of G-chain continuous point and G-limit shadowing property in metric G-space.
WANGH Y, ZENGP. Partial Shadowing of Average-pseudo-orbits[J]. Sci Sin Math, 2016, 46(6): 781-792. DOI: 10.1360/N012014-00256 .
[3]
NIUY X. The Average-shadowing Property and Strong Ergodicity[J]. J Math Anal Appl, 2011, 376(2): 528-534. DOI: 10.1016/j.jmaa.2010.11.024 .
[4]
LIJ, TUS M, YEX D. Mean Equicontinuity and Mean Sensitivity[J]. Ergod Theory Dyn Sys, 2014, 35(8): 2587-2612. DOI: 10.1017/etds.2014.41 .
[5]
JIZ J. The G-sequence Shadowing Property and G-equicontinuity of the Inverse Limit Spaces Under Group Action[J]. Open Math, 2021, 19: 1290-1298. DOI: 10.1515/MATH-2021-0102 .
[6]
JIZ J. G-Expansibility and G-Almost Periodic Point Under Topological Group Action[J]. Math Probl Eng, 2021, 2021: 7326623. DOI:10.1155/2021/7326623 .
ZHONGY H, WANGH Y. q ̲ -equicontinuous Points and q ¯ -sensitive Points[J]. Acta Math Sci, 2018, 38(4): 671-678. DOI:1003-3998(2018)04-671-08 .
[9]
KULCZYCKIM, KWIETNIAKD, OPROCHAP. On Almost Specification and Average Shadowing Properties[J]. Fund Math, 2014, 224(3): 241-278. DOI:10.4064/fm224-3-4 .
[10]
DAS R, DAS T. On Properties of G-expansive Homeomorphisms[J]. Math Slovaca, 2012, 62(3): 531-538. DOI: 10.2478/ s12175-012-0028-7 .
WUX X. Some Remarks d ¯ -shadowing Property[J]. Sci Sin Math, 2015, 45(3): 273-286. DOI: 10.1360/N012 013-00171 .
[13]
OPROCHAP, DASTJERDID A, HOSSEINIM. On Partial Shadowing of Complete Pseudo Orbits[J]. J Math Anal Appl, 2014, 404: 47-56. DOI: 10.1016/j.jmaa.2013.08.062 .
[14]
WANGH Y, XIONGJ C, LUJ. Everywhere Chaos and Equicontinuity via Furstenberg Families[J]. Adv Math, 2011, 40(4): 447-456. DOI: 10.11845/sxjz.2011.40.04.0447 .
[15]
NIUY X. The Average Shadowing Property and Chaos for Continuous Flows[J]. J Dyn Sys Geom Theor, 2017, 15(2): 99-109. DOI: 10.1080/1726037X.2017.1390190 .
[16]
WANGL, ZANGJ L. Lipschitz Shadowing Property for 1-dimensional Subsystems of Z K -actions[J]. J Math Res Appl, 2021, 41(6): 615-628. DOI: 10.3770/j.issn:2095-2651.2021.06.006 .
[17]
LUOX F, NIEX X, YINJ D. On the Shadowing Property and Shadowable Point of Set-valued Dynamical systems[J]. Acta Math Sin, 2020, 36(12): 1384-1394. DOI: 10.1007/S10114-020-9331-3 .
JIZ J, CHENZ H, LIUH L. Several G-Shadowing Properties in Metric G-spaces[J]. J Shanxi Univ Nat Sci Ed, 2024, 47(6): 1127-1135. DOI: 10.13451/j.sxu.ns.2023158 .
[20]
AHMADIS A. Invariants of Topological G-conjugacy on G-Spaces[J]. Math Mora, 2014, 18(1): 67-75. DOI: 10.5937/MatMor1401067A .
[21]
BALOGHZ, LAVERV. Unitary Subgroups of Commutative Group Algebras of the Characteristic Two[J]. Ukr Math J, 2020, 72(6): 871-879. DOI: 10.1007/s11253-020-01829-3 .
JIZ J. G-nonwandering Points and G-chain Recurrent Points of the Shift Map in the Inverse Limit Spaces of a Topological Group Action[J]. J Nat Sci Hunan Normal Univ, 2018, 41(6): 77-81. DOI: 10.7612/j.issn.2096-5281.2 018.06.012 .