In this paper, the above-threshold ionization process of argon atoms is studied using the standard Coulomb-corrected strong-field approximation (CCSFA), i.e. the CCSFA method with uniformly sampled points in momentum space, and the improved CCSFA method with uniformly sampled time. The results show that the photoelectron momentum and energy spectra calculated by the two sampling strategies are basically the same, but there is a quantitative difference between the calculated results in the high-energy part of the photoelectron spectrum due to the difference in the relative contributions of the multiple-return rescattering electrons obtained by the two methods. The analysis shows that the standard CCSFA method samples uniformly in momentum space, but corresponds to inhomogeneity in the time domain, and its sampling number is extremely small at the peak of the laser field, leading to an underestimation of the contribution of the ionized electrons near the peak of the field. Since the ionization time of the multiple-return rescattering electrons is concentrated near the peak of the laser field, their contribution is underestimated by the standard CCSFA method. The use of the time-uniform sampling method overcomes these shortcomings.
PROTOPAPASM, KEITELC H, KNIGHTP L. Atomic Physics with Super-high Intensity Lasers[J]. Rep Prog Phys, 1997, 60(4): 389-486. DOI: 10.1088/0034-4885/60/4/001 .
[2]
BECKERW, GRASBONF, KOPOLDR, et al. Above-threshold Ionization: From Classical Features to Quantum Effects[J]. Adv At Mol Opt Phys, 2002, 48(C): 35-98.
[3]
DE MORISSON FARIAC F, LIUX. Electron–Electron Correlation in Strong Laser Fields[J]. J Mod Opt, 2011, 58(13): 1076-1131. DOI: 10.1080/09500340.2010.543958 .
[4]
BECKERW, LIUX J, HOP J, et al. Theories of Photoelectron Correlation in Laser-driven Multiple Atomic Ionization[J]. Rev Mod Phys, 2012, 84(3): 1011-1043. DOI: 10.1103/revmodphys.84.1011 .
[5]
MACKLINJ J, KMETECJ D, GORDONC L. High-order Harmonic Generation Using Intense Femtosecond Pulses[J]. Phys Rev Lett, 1993, 70(6): 766-769. DOI: 10.1103/PhysRevLett.70.766 .
[6]
XUL, FUL B. Multichannel Interference in Resonancelike Enhancement of High-order Above-threshold Ionization[J]. Phys Rev Lett, 2019, 122(25): 253202. DOI: 10.1103/PhysRevLett.122.253202 .
[7]
BECKERW, GORESLAVSKIS P, MILOŠEVIĆD B, et al. The Plateau in Above-threshold Ionization: The Keystone of Rescattering Physics[J]. J Phys B: At Mol Opt Phys, 2018, 51(16): 162002. DOI: 10.1088/1361-6455/aad150 .
[8]
MICHIELSR, ABU-SAMHAM, MADSENL B, et al. Enhancement of above Threshold Ionization in Resonantly Excited Helium Nanodroplets[J]. Phys Rev Lett, 2021, 127(9): 093201. DOI: 10.1103/PhysRevLett.127.093201 .
[9]
HUP B, LIUJ, CHENS G. Plateau in Above-threshold-ionization Spectra and Chaotic Behavior in Rescattering Processes[J]. Phys Lett A, 1997, 236(5/6): 533-542. DOI: 10.1016/s0375-9601(97)00811-6 .
[10]
LIUC P, HATSAGORTSYANK Z. Origin of Unexpected Low Energy Structure in Photoelectron Spectra Induced by Midinfrared Strong Laser Fields[J]. Phys Rev Lett, 2010, 105(11): 113003. DOI: 10.1103/physrevlett.105.113003 .
[11]
REISSH R. Effect of an Intense Electromagnetic Field on a Weakly Bound System[J]. Phys Rev A, 1980, 22(5): 1786-1813. DOI: 10.1103/physreva.22.1786 .
[12]
BAUERD, KOVALP. Qprop: A Schrödinger-solver for Intense Laser-Atom Interaction[J]. Comput Phys Commun, 2006, 174(5): 396-421. DOI: 10.1016/j.cpc.2005.11.001 .
[13]
LIM, GENGJ W, LIUH, et al. Classical-quantum Correspondence for Above-threshold Ionization[J]. Phys Rev Lett, 2014, 112(11): 113002. DOI: 10.1103/PhysRevLett.112.113002 .
[14]
GENGJ W, QINL, LIM, et al. Nonadiabatic Tunneling Ionization of Atoms in Elliptically Polarized Laser Fields[J]. J Phys B: At Mol Opt Phys, 2014, 47(20): 204027. DOI: 10.1088/0953-4075/47/20/204027 .
[15]
YANT M, POPRUZHENKOS V, VRAKKINGM J J, et al. Low-energy Structures in Strong Field Ionization Revealed by Quantum Orbits[J]. Phys Rev Lett, 2010, 105(25): 253002. DOI: 10.1103/PhysRevLett.105.253002 .
[16]
YANT M, BAUERD. Sub-barrier Coulomb Effects on the Interference Pattern in Tunneling-ionization Photoelectron Spectra[J]. Phys Rev A, 2012, 86(5): 053403. DOI: 10.1103/physreva.86.053403 .
[17]
HAOX L, BAIY X, ZHAOX Y, et al. Effect of Coulomb Field on Laser-induced Ultrafast Imaging Methods[J]. Phys Rev A, 2020, 101(5): 051401. DOI: 10.1103/physreva.101.051401 .
[18]
DUBOISJ, BERMANS A, CHANDREC, et al. Inclusion of Coulomb Effects in Laser-atom Interactions[J]. Phys Rev A, 2019, 99(5): 053405. DOI: 10.1103/physreva.99.053405 .
[19]
KLAIBERM, DANĚKJ, YAKABOYLUE, et al. Strong-field Ionization via a High-order Coulomb-corrected Strong-field Approximation[J]. Phys Rev A, 2017, 95(2): 023403. DOI: 10.1103/physreva.95.023403 .
[20]
ZHAOX Y, LIUM Q, YANGY Z, et al. Controlling Electron Motion with Attosecond Precision by a Shaped Femtosecond Intense Laser Pulse[J]. Phys Rev A, 2024, 109(4): 043115. DOI: 10.1103/PhysRevA.109.043115 .