Based on the (1+1) dimensional linear Schrӧdinger equation, which is a theoretical model to describe the beam evolution in strongly nonlocal nonlinear media with the fourth-order diffraction effect, the transmission dynamics of the hyperbolic cosh-Gaussian beams with initial chirp are numerically studied. The results show that no matter the initial input hyperbolic cosh-Gaussian beam is one-humped or double-humped structure, the beam evolution without initial chirp maintains good periodic pulsation behavior. The normal fourth-order diffraction effect leads to the pulsation period smaller, and the abnormal fourth-order diffraction effect leads to the pulsation period larger. If the center of the initial beam is not located at x = 0, the two sub-beams of the double-humped hyperbolic cosh-Gaussian beam evolve along the "Z-shaped" trajectory with the same period and different oscillation amplitude due to the different offset velocity. The existence of the fourth-order diffraction effect destroys the periodicity of their evolution and causes serious beam splitting. Both the initial chirp and the parabolic potential have certain effects on the amplitude and period of the beam pulsation.
ZHANGY Q, LIUX, BELIĆM R, et al. Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation[J]. Phys Rev Lett, 2015, 115(18): 180403. DOI: 10.1103/PhysRevLett.115.180403 .
[2]
ZANGF, WANGY, LIL. Dynamics of Gaussian Beam Modeled by Fractional Schrödinger Equation with a Variable Coefficient[J]. Opt Express, 2018, 26(18): 23740-23750. DOI: 10.1364/OE.26.023740 .
[3]
WANGW J, WUZ S, SHANGQ C, et al. Propagation of Bessel Gaussian Beams Through Non-Kolmogorov Turbulence Based on Rytov Theory[J]. Opt Express, 2018, 26(17): 21712-21724. DOI: 10.1364/OE.26.021712 .
DUX, DINGG X, DUH, et al. Transmission Characteristics of Hermite-gaussian Beam in Oceanic Turbulence[J]. Acta Opt Sin, 2023, 43(24): 3788/AOS230644. DOI: 10.3788/AOS230644 .
[18]
CASPERSONL W, HALLD G, TOVARA A. Sinusoidal-Gaussian Beams in Complex Optical Systems[J]. J Opt Soc Am A, 1997, 14(12): 3341. DOI: 10.1364/josaa.14.003341 .
[19]
LANJ H, ZENGX Y, UBAIDS, et al. Focusing Properties of Linearly Polarized High Order Hyperbolic-cosine-Gaussian Beam with Sine-azimuthal Wavefront Modulated by Multiple Spiral Optical Vortices[J]. Optik, 2019, 183: 65-72. DOI: 10.1016/j.ijleo.2019.02.047 .
[20]
SHENS, YANGZ J, LIX L, et al. Periodic Propagation of Complex-valued Hyperbolic-cosine-Gaussian Solitons and Breathers with Complicated Light Field Structure in Strongly Nonlocal Nonlinear Media[J]. Commun Nonlinear Sci Numer Simulat, 2021, 103: 106005. DOI: 10.1016/j.cnsns.2021.106005 .
[21]
LIUJ Y, JIAOR Y, WANGJ, et al. Propagation Dynamics of Cosh-airy Beams in Kerr Nonlinear Media[J]. J Nonlinear Optic Phys Mat, 2019, 28(3): 1950030. DOI: 10.1142/s0218863519500309 .
[22]
ZHANGX, CHENC S, ZHANGL F. Anomalous Interaction of Pearcey Gaussian Pulse in Saturable Nonlinear Media[J]. Opt Commun, 2023, 536: 129289. DOI: 10.1016/j.optcom.2023.129289 .
[23]
HRICHAZ, HALBA E MEL, BELAFHALA. Propagation of Circular Cosine-hyperbolic Gaussian Beams in Strongly Nonlocal Nonlinear Media[J]. Opt Quantum Electron, 2023, 55(5): 473. DOI: 10.1007/s11082-023-04758-0 .
[24]
ICHIHASHIK, MIZUTANIY, IWATAT. Enhancement of the Sensitivity of a Diffraction-grating-based Surface Plasmon Resonance Sensor Utilizing the First-and Negative-second-order Diffracted Lights[J]. Opt Rev, 2014, 21(5): 728-731. DOI: 10.1007/s10043-014-0119-5 .
[25]
LIUZ W, SHIL N, PUT C, et al. Two-dimensional Gratings of Hexagonal Holes for High Order Diffraction Suppression[J]. Opt Express, 2017, 25(2): 1339-1349. DOI: 10.1364/OE.25.001339 .
[26]
XUY J. (3+1)-dimensional Optical Soliton Solutions of Nonlinear Schrödinger Equations with High-order Diffraction/Dispersion, Parity-time Symmetric Potentials and Different Order Nonlinearities[J]. Optik, 2019, 191: 55-59.
[27]
NAKAJIMAM, NEMOTON, YAMAGUCHIK, et al. Analysis and Suppression of High-order Diffractions in Liquid-crystal-based Spatial Light Modulator for Photonic Switch Application[J]. Jpn J Appl Phys, 2017, 56(9S): 09NC01. DOI: 10.7567/jjap.56.09nc01 .
[28]
MAD D, YUD M, ZHAOX D, et al. Unidirectional and Controllable Higher-order Diffraction by a Rydberg Electromagnetically Induced Grating[J]. Phys Rev A, 2019, 99(3): 033826. DOI: 10.1103/physreva.99.033826 .
[29]
LIUZ W, PUT C, NIUJ B, et al. High-efficiency V-shaped Phase Gratings to Suppress High Order Diffractions[J]. AIP Adv, 2019, 9(1): 015308. DOI: 10.1063/1.5043611 .
[30]
RUNGEA F J, ALEXANDERT J, NEWTONJ, et al. Self-similar Propagation of Optical Pulses in Fibers with Positive Quartic Dispersion[J]. Opt Lett, 2020, 45(13): 3365-3368. DOI: 10.1364/OL.393835 .
[31]
PICHÉM, CORMIERJ F, ZHUX. Bright Optical Soliton in the Presence of Fourth-order Dispersion[J]. Opt Lett, 1996, 21(12): 845-847. DOI: 10.1364/ol.21.000845 .
[32]
COLEJ T, MUSSLIMANIZ H. Band Gaps and Lattice Solitons for the Higher-order Nonlinear Schrödinger Equation with a Periodic Potential[J]. Phys Rev A, 2014, 90: 013815. DOI: 10.1103/physreva.90.013815 .
[33]
GEL J, SHENM, MAC L, et al. Gap Solitons in PT-symmetric Optical Lattices with Higher-order Diffraction[J]. Opt Express, 2014, 22(24): 29435-29444. DOI: 10.1364/OE.22.029435 .
[34]
LIJ W, ZHANGY P, ZENGJ H, Dark Gap Solitons in One-dimensional Nonlinear Periodic Media with Fourth-order Dispersion[J]. Chaos Soliton Fract, 2022, 157: 111950. DOI: 10.1016/j.chaos.2022.111950 .
[35]
BLANCO-REDONDOA, DE STERKEC M, SIPEJ E, et al. Pure-quartic Solitons[J]. Nat Commun, 2016, 7: 10427. DOI: 10.1038/ncomms10427 .
[36]
ALEXANDERT J, TSOLIASG A, DEMIRKAYAA, et al. Dark Solitons Under Higher-order Dispersion[J]. Opt Lett, 2022, 47(5): 1174-1177. DOI: 10.1364/OL.450835 .
[37]
ZHANGY Q, BELIĆM R, ZHANGL, et al. Periodic Inversion and Phase Transition of Finite Energy Airy Beams in a Medium with Parabolic Potential[J]. Opt Express, 2015, 23(8): 10467-10480. DOI: 10.1364/OE.23.010467 .
[38]
ZHOUY M, XUY Q, CHUX X, et al. Propagation of Cosh-airy and Cos-airy Beams in Parabolic Potential[J]. Appl Sci, 2019, 9(24): 5530. DOI: 10.3390/app9245530 .
[39]
LIJ, SUNP, MAH, et al. Focus Properties of Cosh-Gaussian Beams with the Power-exponent-phase Vortex[J]. J Opt Soc Am A Opt Image Sci Vis, 2020, 37(3): 483-490. DOI: 10.1364/josaa.381192 .
[40]
FANGL Z, SONGL J, CHENS J. Periodic Oscillation Behavior of Chirped Cosh-Gaussian Beam in Parabolic Potential[J]. Opt Commun, 2023, 537: 129376. DOI: 10.1016/j.optcom.2023.129376 .