In this paper, we studied the topological structure and localization properties of the extended Su-Schrieffer-Heeger (SSH) model with quasi-periodic potential. By numerically calculating the real-space winding number and analyzing the localization length of zero modes, we obtain a topological phase diagram and find that the system exhibits reentrant topological Anderson insulator (RTAI) behavior, which is different from traditional quasi-periodic potential modulation systems. In addition, by analyzing the localization properties of the system, we find that under quasi-periodic potential modulation, the system undergoes extended phases, intermediate phases (with mobility edges), and localized phases, and the intermediate phase consists of extended, critical, and localized states. The inverse participation ratio and normalized participation ratio was used as tools to characterize the extended and localized states. Furthermore, through finite-size scaling analysis of fractal dimension, the composition of the intermediate phase region is clearly demonstrated.
拓扑绝缘体作为一种新奇的量子材料,在当前凝聚态物理学研究中备受关注[1-2]。该绝缘体具备有能隙的体态和无能隙的边界态,并可通过拓扑不变量来表征。其中Su-Schrieffer-Heeger(SSH)模型[3]是研究拓扑绝缘体性质最简单的模型并展示出非常丰富的物理性质,如分数电荷、孤子激发[4]和零模边界态[5]。拓扑绝缘体的标志特征是拓扑态对弱无序具有鲁棒性,而在强无序下,带隙闭合,所有本征态局域化,使系统的拓扑态变平庸,同时伴随着无能隙边界态的消失[6]。然而已有研究发现,在拓扑平庸的绝缘体中加入无序会诱导拓扑态的产生,即拓扑安德森绝缘体(Topological Anderson Insulator,TAI)[7]。事实上,TAI是无序[8]对拓扑项的重整化导致的,而不是无序诱导的局域化现象。这种有趣的现象使人们开始关注拓扑与无序之间关联。近年来,TAI及其推广[9-10]在各种理论模型中得以研究,并且得益于超冷原子技术的发展,实验上通过人工系统中的量子模拟可观察到TAI[11]。但目前大部分工作都考虑的是随机无序,这导致TAI所对应的本征态都是安德森局域化的[12]。有研究表明在对角线上或者非对角线上加入非公度势能,如准周期势,会出现包含各种体态的拓扑安德森绝缘体[13],这与随机无序诱导的TAI不同。准周期势最早是在Aubry-André(AA)模型中引入的[14],在一些扩展的AA模型中[15-17],能观察到与能量相关的局域化转变点即迁移率边,同时存在扩展相、局域相,以及有迁移率边存在形成的中间相也叫临界相。
最近在一个具有非对角准周期调制的扩展SSH模型[18]中展现出了有趣的拓扑性质,它不仅观察到TAI,并且TAI对大于临界强度的无序具有鲁棒性,这与之前的强无序驱使TAI发生平庸相变的传统观点不同。另外,SSH模型一种典型的扩展即将单个原胞内的两格点变为四格点,因此,标准的SSH模型变为具有四个跃迁系数的SSH4模型,SSH4模型具有手性对称性,与SSH模型属于同一拓扑类别,绕数可以表征其能带拓扑。SSH4模型的拓扑平庸相和非平庸相由跃迁系数比值决定[19-20]。当SSH的奇偶原胞内具有比值交替变化的跃迁准周期势调制时,最近邻跃迁系数是以四个格点为周期,系统的拓扑性质和局域化性质会表现出怎样的行为?我们发现,胞内固定跃迁在一定范围内时,调节准周期的强度会产生重返拓扑安德森绝缘相(Reentrant Topological Anderson Insulator,RTAI)的现象。
PALR K, SCHAEFFERM, RUZZENEM. Helical Edge States and Topological Phase Transitions in Phononic Systems Using Bi-layered Lattices[J]. J Appl Phys, 2016, 119(8): 084305. DOI: 10.1063/1.4942357 .
[2]
VERBINM, ZILBERBERGO, KRAUSY E, et al. Observation of Topological Phase Transitions in Photonic Quasicrystals[J]. Phys Rev Lett, 2013, 110(7): 076403. DOI: 10.1103/physrevlett.110.076403 .
[3]
SUW P, SCHRIEFFERJ R, HEEGERA J. Solitons in Polyacetylene[J]. Phys Rev Lett, 1979, 42(25): 1698-1701. DOI: 10.1103/physrevlett.42.1698 .
[4]
JACKIWR, REBBIC. Solitons with Fermion Number ½[J]. Phys Rev D, 1976, 13(12): 3398-3409. DOI: 10.1103/physrevd.13.3398 .
XUZ H, ZHANGR, CHENS, et al. Fate of Zero Modes in a Finite Su-Schrieffer-Heeger Model with PT Symmetry[J]. Phys Rev A, 2020, 101: 013635. DOI: 10.1103/physreva.101.013635 .
[7]
LIJ, CHUR L, JAINJ K, et al. Topological Anderson Insulator[J]. Phys Rev Lett, 2009, 102(13): 136806. DOI: 10.1103/PhysRevLett.102.136806 .
[8]
GROTHC W, WIMMERM, AKHMEROVA R, et al. Theory of the Topological Anderson Insulator[J]. Phys Rev Lett, 2009, 103(19): 196805. DOI: 10.1103/PhysRevLett.103.196805 .
[9]
YANGY B, LIK, DUANL M, et al. Higher-order Topological Anderson Insulators[J]. Phys Rev B, 2021, 103(8): 085408. DOI: 10.1103/physrevb.103.085408 .
[10]
LIC G, FUB, HUZ A, et al. Topological Phase Transitions in Disordered Electric Quadrupole Insulators[J]. Phys Rev Lett, 2020, 125(16): 166801. DOI: 10.1103/PhysRevLett.125.166801 .
[11]
LIUG G, YANGY H, RENX, et al. Topological Anderson Insulator in Disordered Photonic Crystals[J]. Phys Rev Lett, 2020, 125(13): 133603. DOI: 10.1103/PhysRevLett.125.133603 .
[12]
MEIERE J, ANF A, DAUPHINA, et al. Observation of the Topological Anderson Insulator in Disordered Atomic Wires[J]. Science, 2018, 362(6417): 929-933. DOI: 10.1126/science.aat3406 .
[13]
TANGL Z, LIUS N, ZHANGG Q, et al. Topological Anderson Insulators with Different Bulk States in Quasiperiodic Chains[J]. Phys Rev A, 2022, 105(6): 063327. DOI: 10.1103/physreva.105.063327 .
[14]
ADOLPHSC, TOWERSJ, PIRAUDM, et al. Effects of Interactions and Temperature in Disordered Ultra-cold Bose Gases[J]. J Mod Phys, 2014, 5(8): 661-672. DOI: 10.4236/jmp.2014.58077 .
[15]
LÜSCHENH P, SCHERGS, KOHLERTT, et al. Single-particle Mobility Edge in a One-dimensional Quasiperiodic Optical Lattice[J]. Phys Rev Lett, 2018, 120(16): 160404. DOI: 10.1103/PhysRevLett.120.160404 .
[16]
HSUY T, LIX, DENGD L, et al. Machine Learning Many-body Localization: Search for the Elusive Nonergodic Metal[J]. Phys Rev Lett, 2018, 121(24): 245701. DOI: 10.1103/PhysRevLett.121.245701 .
[17]
XUS L, LIX, HSUY T, et al. Butterfly Effect in Interacting Aubry-Andre Model: Thermalization, Slow Scrambling, and Many-body Localization[J]. Phys Rev Research, 2019, 1(3): 032039. DOI: 10.1103/physrevresearch.1.032039 .
[18]
LUZ P, ZHANGY B, XUZ H. Robust Topological Anderson Insulator Induced Reentrant Localization Transition[E/OL]. arXiv: Preprint:2306.06818, 2023. DOI:10.48550/arXiv.2306.06818 .
[19]
ZHOUX F, PANJ S, JIAS T. Exploring Interacting Topological Insulator in the Extended Su-Schrieffer-Heeger Model[J]. Phys Rev B, 2023, 107(5): 054105. DOI: 10.1103/physrevb.107.054105 .
[20]
XIED Z, GOUW, XIAOT, et al. Topological Characterizations of an Extended Su-Schrieffer-Heeger Model[J]. NPJ Quantum Inf, 2019, 5: 55. DOI: 10.1038/s41534-019-0159-6 .
[21]
CHIUC K, TEOJ C , SCHNYDERA P, et al. Classification of Topological Quantum Matter with Symmetries[J]. Rev Mod Phys, 2016, 88(3): 035005. DOI: 10.1103/revmodphys.88.035005 .
[22]
RYU S, SCHNYDERA P, FURUSAKIA, et al. Topological Insulators and Superconductors: Tenfold Way and Dimensional Hierarchy[J]. New J Phys, 2010, 12(6): 065010. DOI: 10.1088/1367-2630/12/6/065010 .
[23]
MONDRAGON-SHEMI, HUGHEST L, SONGJ T, et al. Topological Criticality in the Chiral-symmetric AIII Class at Strong Disorder[J]. Phys Rev Lett, 2014, 113(4): 046802. DOI: 10.1103/PhysRevLett.113.046802 .
[24]
XUZ H, CHENS. Dynamical Evolution in a One-dimensional Incommensurate Lattice with PT Symmetry[J]. Phys Rev A, 2021, 103(4): 043325. DOI: 10.1103/physreva.103.043325 .
WANGY C, ZHANGL, NIUS, et al. Realization and Detection of Nonergodic Critical Phases in an Optical Raman Lattice[J]. Phys Rev Lett, 2020, 125(7): 073204. DOI: 10.1103/PhysRevLett.125.073204 .