Using the quantum mechanical scattering matrix theory, the electron momentum correlated distribution of different-return collision orbits in the recollision excitation with subsequent field ionization process of nonsequential double ionization of Ar atoms in intense laser fields is studied. The research results indicate that the electron momentum correlated distribution of different-return collision orbits is related to the parity of the return times. The peaks of the electron momentum correlated distribution of the odd-return and even-return collision orbits move towards high momentum and low momentum respectively with the increase of the return times. The analysis shows that the main reason for this phenomenon is that the maximum return energy of the rescattered electrons varies with the parity of the return times. In addition, it is noteworthy that when the laser intensity is 9×1013 W/cm2, the shape of the peak region of the electron momentum correlated distribution for the third-return collision orbit is different from the elliptical distribution of the other return orbits, but shows a narrow and long strip distribution. This is mainly due to the special structure of the saddle point orbit under this condition, that is, in a certain longitudinal momentum region, there is a sudden change in the real parts of the ionization time and rescattering time of the long and short orbits, and a transition from the classical forbidden region to the classical allowed region occurs.
再散射机制是非序列双电离过程的主要产生机制,当第一个出射的光电子在强激光场的驱动下返回并与母离子发生非弹性碰撞时[11],就会发生非序列双电离。它包含两种不同物理机制:当返回电子与第二个束缚电子发生碰撞,使得两个电子同时电离出去时,称为电子直接碰撞电离机制[12-14](Recollision-impact Ionization,RII);而当返回电子的能量不足以使束缚电子直接电离,而是使其跃迁到激发态,随后在场的作用下再发生电离时,称为电子碰撞激发场电离机制[15-17](Recollision Excitation with Subsequent Field Ionization,RESI)。目前已有很多研究证实了当激光光强低于再散射阈值光强时,RESI在非序列双电离过程中有重要作用,例如,Liu等研究了Ar原子在低于再散射阈值光强下的双电离过程,发现隧穿电子返回时的最大能量比第二个电子的电离势小,双电离过程主要是通过碰撞激发场电离发生[18]。Hao等利用量子力学散射矩阵理论进行的研究发现,当光强低于再散射阈值时Ar原子碰撞激发场电离过程中不同激发态通道之间的干涉可以形成两个电子的背对背发射[19]。白宇星等利用最近发展的库仑修正的量子轨迹方法研究了Ar原子在少周期激光脉冲中的再碰撞激发电离过程,发现随着光强的增大Ar原子的电子动量关联分布逐渐由二四象限向一三象限转变[20]。
L'HUILLIERA, LOMPREL A, MAINFRAYG, et al. Multiply Charged Ions Induced by Multiphoton Absorption in Rare Gases at 0.53 Μm[J]. Phys Rev A, 1983, 27(5): 2503-2512. DOI: 10.1103/physreva.27.2503 .
[2]
FITTINGHOFFD N, BOLTONP R, CHANGB, et al. Observation of Nonsequential Double Ionization of Helium with Optical Tunneling[J]. Phys Rev Lett, 1992, 69(18): 2642-2645. DOI: 10.1103/PhysRevLett.69.2642 .
[3]
LIY B, QINL L, LIUA H, et al. Manipulating Nonsequential Double Ionization of Argon Atoms via Orthogonal Two-color Field[J]. Chin Phys Lett, 2022, 39(9): 093201. DOI: 10.1088/0256-307x/39/9/093201 .
[4]
PENGM, BAIL H, GUOZ. Influence of Relative Phase on the Nonsequential Double Ionization Process of CO2 Molecules by Counter-rotating Two-color Circularly Polarized Laser Fields[J]. Commun Theor Phys, 2021, 73(7): 075501. DOI: 10.1088/1572-9494/abfb60 .
[5]
WALKERB, SHEEHYB, DIMAUROL F, et al. Precision Measurement of Strong Field Double Ionization of Helium[J]. Phys Rev Lett, 1994, 73(9): 1227-1230. DOI: 10.1103/PhysRevLett.73.1227 .
[6]
LAFONR, CHALOUPKAJ L, SHEEHYB, et al. Electron Energy Spectra from Intense Laser Double Ionization of Helium[J]. Phys Rev Lett, 2001, 86(13): 2762-2765. DOI: 10.1103/PhysRevLett.86.2762 .
[7]
CHALOUPKAJ L, RUDATIJ, LAFONR, et al. Observation of a Transition in the Dynamics of Strong-field Double Ionization[J]. Phys Rev Lett, 2003, 90(3): 033002. DOI: 10.1103/PhysRevLett.90.033002 .
[8]
PETERSONE R, BUCKSBAUMP H. Above-threshold Double-ionization Spectroscopy of Argon[J]. Phys Rev A, 2001, 64(5): 053405. DOI: 10.1103/physreva.64.053405 .
[9]
WITZELB, PAPADOGIANNISN A, CHARALAMBIDISD. Charge-state Resolved Above Threshold Ionization[J]. Phys Rev Lett, 2000, 85(11): 2268-2271. DOI: 10.1103/PhysRevLett.85.2268 .
[10]
DE JESUSV B, FEUERSTEINB, ZROSTK, et al. Atomic Structure Dependence of Nonsequential Double Ionization of He, Ne and Ar in Strong Laser Pulses[J]. J Phys B: At Mol Opt Phys, 2004, 37(8): L161-L167. DOI: 10.1088/0953-4075/37/8/l03 .
[11]
CHENJ H, XUT T, HANT, et al. Relative Phase Effect of Nonsequential Double Ionization in Ar by Two-color Elliptically Polarized Laser Field[J]. Chin Phys B, 2020, 29(1): 013203. DOI: 10.1088/1674-1056/ab5d03 .
[12]
WEBERT, GIESSENH, WECKENBROCKM, et al. Correlated Electron Emission in Multiphoton Double Ionization[J]. Nature, 2000, 405(6787): 658-661. DOI: 10.1038/35015033 .
[13]
STAUDTEA, RUIZC, SCHÖFFLERM, et al. Binary and Recoil Collisions in Strong Field Double Ionization of Helium[J]. Phys Rev Lett, 2007, 99(26): 263002. DOI: 10.1103/PhysRevLett.99.263002 .
[14]
RUDENKOA, DE JESUSV L B, ERGLERT, et al. Correlated Two-electron Momentum Spectra for Strong-field Nonsequential Double Ionization of He at 800 nm[J]. Phys Rev Lett, 2007, 99(26): 263003. DOI: 10.1103/PhysRevLett.99.263003 .
[15]
BERGUESB, KÜBELM, JOHNSONN G, et al. Attosecond Tracing of Correlated Electron-emission in Non-sequential Double Ionization[J]. Nat Commun, 2012, 3: 813. DOI: 10.1038/ncomms1807 .
[16]
MAXWELLA S, FARIAC F. Controlling Below-threshold Nonsequential Double Ionization via Quantum Interference[J]. Phys Rev Lett, 2016, 116(14): 143001. DOI: 10.1103/PhysRevLett.116.143001 .
[17]
SHAARANT, CAMUSN, DURAJ, et al. Role of High Ponderomotive Energy in Laser-induced Nonsequential Double Ionization[J]. Phys Rev A, 2019, 99(2): 023421. DOI: 10.1103/physreva.99.023421 .
[18]
LIUY Q, TSCHUCHS, RUDENKOA, et al. Strong-field Double Ionization of Ar Below the Recollision Threshold[J]. Phys Rev Lett, 2008, 101(5): 053001. DOI: 10.1103/PhysRevLett.101.053001 .
[19]
HAOX L, CHENJ, LIW D, et al. Quantum Effects in Double Ionization of Argon Below the Threshold Intensity[J]. Phys Rev Lett, 2014, 112(7): 073002. DOI: 10.1103/PhysRevLett.112.073002 .
BAIY X, HAOX L, LIW D. Few-cycle Laser Intensity on Recollision Excitation with Subsequent Ionization of Argon Atoms[J]. J Shanxi Univ Nat Sci Ed, 2023, 46(2): 362-366. DOI: 10.13451/j.sxu.ns.2022026 .
[22]
HAOX L, LIW D, LIUJ, et al. Effect of the Electron Initial Longitudinal Velocity on the Nonsequential Double-ionization Process[J]. Phys Rev A, 2011, 83(5): 053422. DOI: 10.1103/physreva.83.053422 .
[23]
WUM Y, WANGY L, LIUX J, et al. Coulomb-potential Effects in Nonsequential Double Ionization under Elliptical Polarization[J]. Phys Rev A, 2013, 87: 013431. DOI: 10.1103/physreva.87.013431 .
[24]
HAOX L, BAIY X, ZHAOX Y, et al. Effect of Coulomb Field on Laser-induced Ultrafast Imaging Methods[J]. Phys Rev A, 2020, 101(5): 051401. DOI: 10.1103/physreva.101.051401 .
[25]
QUANW, LINZ, WUM, et al. Classical Aspects in Above-threshold Ionization with a Midinfrared Strong Laser Field[J]. Phys Rev Lett, 2009, 103(9): 093001. DOI: 10.1103/PhysRevLett.103.093001 .
[26]
WUC Y, YANGY D, LIUY Q, et al. Characteristic Spectrum of very Low-energy Photoelectron from Above-threshold Ionization in the Tunneling Regime[J]. Phys Rev Lett, 2012, 109(4): 043001. DOI: 10.1103/PhysRevLett.109.043001 .
[27]
LIUY Q, YED F, LIUJ, et al. Multiphoton Double Ionization of Ar and Ne Close to Threshold[J]. Phys Rev Lett, 2010, 104(17): 173002. DOI: 10.1103/PhysRevLett.104.173002 .
[28]
YED F, LIM, FUL B, et al. Scaling Laws of the Two-electron Sum-energy Spectrum in Strong-field Double Ionization[J]. Phys Rev Lett, 2015, 115(12): 123001. DOI: 10.1103/PhysRevLett.115.123001 .
[29]
WOLTERB, PULLENM G, BAUDISCHM, et al. Strong-field Physics with Mid-IR Fields[J]. Phys Rev X, 2015, 5(2): 021034. DOI: 10.1103/physrevx.5.021034 .
[30]
TRABATTONIA, WIESEJ, DE GIOVANNINIU, et al. Setting the Photoelectron Clock Through Molecular Alignment[J]. Nat Commun, 2020, 11(1): 2546. DOI: 10.1038/s41467-020-16270-0 .
[31]
JIAX Y, HAOX L, FAND H, et al. S-matrix and Semiclassical Study of Electron-electron Correlation in Strong-field Nonsequential Double Ionization of Ne[J]. Phys Rev A, 2013, 88(3): 033402. DOI: 10.1103/physreva.88.033402 .
[32]
SHAARANT, NYGRENM T, FIGUEIRADE MORISSON FARIA C. Laser-induced Nonsequential Double Ionization at and Above the Recollision-excitation-tunneling Threshold[J]. Phys Rev A, 2010, 81(6): 063413. DOI: 10.1103/physreva.81.063413 .
[33]
SHAARANT, FIGUEIRADE MORISSON FARIA C. Laser-induced Nonsequential Double Ionization: Kinematic Constraints for the Recollision-excitation-tunneling Mechanism[J]. J Mod Opt, 2010, 57(11): 984-991. DOI: 10.1080/09500340903414619 .
[34]
FIGUEIRADE MORISSON FARIA C, SCHOMERUSH, BECKERW. High-order Above-threshold Ionization: The Uniform Approximation and the Effect of the Binding Potential[J]. Phys Rev A, 2002, 66(4): 043413. DOI: 10.1103/physreva.66.043413 .
[35]
LEWENSTEINM, KULANDERK C, SCHAFERK J, et al. Rings in Above-threshold Ionization: A Quasiclassical Analysis[J]. Phys Rev A, 1995, 51(2): 1495-1507. DOI: 10.1103/physreva.51.1495 .
[36]
GUOC, LIM, NIBARGERJ P, et al. Single and Double Ionization of Diatomic Molecules in Strong Laser Fields[J]. Phys Rev A, 1998, 58(6): R4271-R4274. DOI: 10.1103/physreva.58.r4271 .
[37]
FEUERSTEINB, MOSHAMMERR, FISCHERD, et al. Separation of Recollision Mechanisms in Nonsequential Strong Field Double Ionization of Ar: The Role of Excitation Tunneling[J]. Phys Rev Lett, 2001, 87(4): 043003. DOI: 10.1103/PhysRevLett.87.043003 .
[38]
TUX H, HAOX L, LIW D, et al. Nonadiabatic Effect on the Rescattering Trajectories of Electrons in Strong Laser Field Ionization Process[J]. Chin Phys Lett, 2016, 33(9): 093201. DOI: 10.1088/0256-307x/33/9/093201 .