In this paper, we study the exact solutions of a three-well system with a parity-time (PT) symmetry. The exact solutions are discussed in the PT symmetric region, broken PT symmetric region and exceptional points (EPs), respectively. Based on them, we analyzed the dynamics of the system in these regions furtherly. It is found that the periodic oscillation characteristics of the PT symmetric phase are influenced by the gain/loss strength and the potential energy difference. However, in the case of EPs and PT broken phase, its oscillation is broken. In addition, the occupancy probability in the intermediate well increases with the gain/loss strength, and especially grows faster when the strength is larger than the transition energy.
BENDERC M, BOETTCHERS. Real Spectra in Non-hermitian Hamiltonians Having PT Symmetry[J]. Phys Rev Lett, 1998, 80(24): 5243-5246. DOI: 10.1103/physrevlett.80.5243 .
[2]
MOSTAFAZADEHA. Pseudo-hermitian Representation of Quantum Mechanics[J]. Int J Geom Methods Mod Phys, 2010, 7(7): 1191-1306. DOI: 10.1142/s0219887810004816 .
[3]
CAROLANJ, HARROLDC, SPARROWC, et al. Universal Linear Optics[J]. Science, 2015, 349(6249): 711-716. DOI: 10.1126/science.aab3462 .
[4]
DIZDAREVICD, MAINJ, ALPINK, et al. Realization of Balanced Gain and Loss in a Time-dependent Four-mode Bose-Hubbard Model[J]. Phys Rev A, 2018, 97: 013623. DOI: 10.1103/physreva.97.013623 .
[5]
NAKANISHIY, SASAMOTOT. PT Phase Transition in Open Quantum Systems with Lindblad Dynamics[J]. Phys Rev A, 2022, 105(2): 022219. DOI: 10.1103/physreva.105.022219 .
[6]
ZHUB G, LÜR, CHENS. PT Symmetry in the Non-hermitian Su-Schrieffer-Heeger Model with Complex Boundary Potentials[J]. Phys Rev A, 2014, 89(6): 062102. DOI: 10.1103/physreva.89.062102 .
[7]
PANL, WANGX L, CUIX L, et al. Interaction-induced Dynamical PT-symmetry Breaking in Dissipative Fermi-Hubbard Models[J]. Phys Rev A, 2020, 102(2): 023306. DOI: 10.1103/physreva.102.023306 .
[8]
HEISSW D. The Physics of Exceptional Points[J]. J Phys A: Math Theor, 2012, 45(44): 444016. DOI: 10.1088/1751-8113/45/44/444016 .
[9]
EL-GANAINYR, MAKRISK G, KHAJAVIKHANM, et al. Non-hermitian Physics and PT Symmetry[J]. Nat Phys, 2018, 14: 11-19. DOI: 10.1038/nphys4323 .
[10]
LONGHIS. Quantum Statistical Signature of PT Symmetry Breaking[J]. Opt Lett, 2020, 45(6): 1591-1594. DOI: 10.1364/ol.386232 .
[11]
YAMAMOTOK, ASHIDAY, KAWAKAMIN. Rectification in Nonequilibrium Steady States of Open Many-body Systems[J]. Phys Rev Research, 2020, 2(4): 043343. DOI: 10.1103/physrevresearch.2.043343 .
[12]
PIRESD P, MACRÌT. Probing Phase Transitions in Non-hermitian Systems with Multiple Quantum Coherences[J]. Phys Rev B, 2021, 104(15): 155141. DOI: 10.1103/physrevb.104.155141 .
[13]
XIAS Q, KALTSASD, SONGD H, et al. Nonlinear Tuning of PT Symmetry and Non-hermitian Topological States[J]. Science, 2021, 372(6537): 72-76. DOI: 10.1126/science.abf6873 .
[14]
HAIW H, HAI K, CHENQ. Transparent Control of an Exactly Solvable Two-level System via Combined Modulations[J]. Phys Rev A, 2013, 87(2): 023403. DOI: 10.1103/physreva.87.023403 .
[15]
LUOX B, YANGB Y, ZHANGX F, et al. Analytical Results for a Parity-time-symmetric Two-level System under Synchronous Combined Modulations[J]. Phys Rev A, 2017, 95(5): 052128. DOI: 10.1103/physreva.95.052128 .
[16]
ZHANGW J, JINK, JINL L, et al. Analytic Results for the Population Dynamics of a Driven Dipolar Molecular System[J]. Phys Rev A, 2016, 93(4): 043840. DOI: 10.1103/physreva.93.043840 .
[17]
LIW J, YINH C, YIJ, et al. Physics of Manipulation of Spin Dynamics in a Driven Double Well Made Transparent[J]. Results Phys, 2022, 39: 105706. DOI: 10.1016/j.rinp.2022.105706 .
[18]
TOROSOVB T, DELLA VALLEG, LONGHIS. Non-hermitian Shortcut to Stimulated Raman Adiabatic Passage[J]. Phys Rev A, 2014, 89(6): 063412. DOI: 10.1103/physreva.89.063412 .
[19]
LUANT Z, SHENH Z, YIX X. Shortcuts to Adiabaticity with General Two-level Non-hermitian Systems[J]. Phys Rev A, 2022, 105: 013714. DOI: 10.1103/physreva.105.013714 .
[20]
LUOY R, WANGX M, YIJ, et al. Exact Solutions for a Spin-orbit Coupled Ultracold Atom Held in a Driven Double Well[J]. J Phys A: Math Theor, 2023, 56(32): 325302. DOI: 10.1088/1751-8121/ace570 .
[21]
BRADLYC J, RAB M, GREENTREEA D, et al. Coherent Tunneling via Adiabatic Passage in a Three-well Bose-Hubbard System[J]. Phys Rev A, 2012, 85(5): 053609. DOI: 10.1103/physreva.85.053609 .
[22]
LIL P, WANGB, LIW B. Integer and Fractional Floquet Resonances in a Driven Three-well System[J]. Photonics, 2022, 9(10): 738. DOI: 10.3390/photonics9100738 .
[23]
GUOL P, DUL, YINC H, et al. Dynamical Evolutions in Non-hermitian Triple-well Systems with a Complex Potential[J]. Phys Rev A, 2018, 97(3): 032109. DOI: 10.1103/physreva.97.032109 .
[24]
SCHLAGHECKP, MALETF, CREMONJ C, et al. Transport and Interaction Blockade of Cold Bosonic Atoms in a Triple-well Potential[J]. New J Phys, 2010, 12(6): 065020. DOI: 10.1088/1367-2630/12/6/065020 .
[25]
YAOS Y, WANGZ. Edge States and Topological Invariants of Non-hermitian Systems[J]. Phys Rev Lett, 2018, 121(8): 086803. DOI: 10.1103/PhysRevLett.121.086803 .
[26]
SHILLITOR, GROSSJ A, DI PAOLOA, et al. Fast and Differentiable Simulation of Driven Quantum Systems[J]. Phys Rev Research, 2021, 3(3): 033266. DOI: 10.1103/physrevresearch.3.033266 .
[27]
LIW L, DONGX, ZHANGG F, et al. Flying-qubit Control via a Three-level Atom with Tunable Waveguide Couplings[J]. Phys Rev B, 2022, 106(13): 134305. DOI: 10.1103/physrevb.106.134305 .
[28]
ECONOMOUS E. High-fidelity Quantum Gates via Analytically Solvable Pulses[J]. Phys Rev B, 2012, 85(24): 241401. DOI: 10.1103/physrevb.85.241401 .