Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
Show less
文章历史+
Received
Accepted
Published
2024-02-16
Issue Date
2026-01-28
PDF (1286K)
摘要
本文基于原子和光的相互作用,提出了一种在双阱中实现超冷原子纠缠的方案。文章通过测量两阱中原子量子态的相关性,证明了这些态违反了CHSH(Clauser Home Shimony Holt)不等式,从而展示了双阱中超冷原子的非定域性。该系统中原子自发辐射耗散会对纠缠结果产生一定的影响,随着耗散的增加,50/50分束效果的时间逐渐增加,但布居数在特定范围内时耗散不会对CHSH不等式的违反产生影响,即此方案依然可以实现双阱中超冷原子的非定域性。此方案可以推广到多体系统中,对多体纠缠的研究具有重要意义。
Abstract
The article proposes a scheme for achieving the entanglement of ultracold atoms in a double well by utilizing the interaction between atoms and light. The correlation of atomic quantum states in the double well is measured, demonstrating that the CHSH inequality is violated by these states, thereby indicating the nonlocality of ultracold atoms in the double well. A certain impact on the entanglement results will be exerted by the spontaneous radiation dissipation of atoms in the system. As the dissipation increases, the time for the 50/50 beam splitting effect gradually increases, but within a specific range of population, the dissipation does not affect the violation of the CHSH inequality. Therefore, the nonlocality of ultracold atoms in the double well can still be achieved by this scheme. This scheme can be extended to multi-body systems and is of great significance for the study of multipartite entanglement.
本文提出了一种实现双阱中超冷原子非定域性的方法。文章先研究了光与原子相互作用。一对Raman光作用于原子,在大失谐情况下,三能级系统等效为二能级系统,通过控制相互作用的时间,可以控制原子处于某种状态的概率,这是一种分束操作,其作用效果等同于分束器。在这个过程中,考虑到自发辐射耗散的影响,我们利用主方程研究了粒子布居数的分布情况。然后,利用这一分束作用,在双阱中研究了超冷原子非定域态的产生,发现这些态违反了CHSH(Clauser Home Shimony Holt)不等式,即双阱中原子产生了纠缠态。
RÄTZELD, WILKENSM, MENZELR. Effect of Polarization Entanglement in Photon-photon Scattering[J]. Phys Rev A, 2017, 95: 012101. DOI: 10.1103/physreva.95.012101 .
[2]
KARIMIE, LEACHJ, SLUSSARENKOS, et al. Spin-orbit Hybrid Entanglement of Photons and Quantum Contextuality[J]. Phys Rev A, 2010, 82(2): 022115. DOI: 10.1103/physreva.82.022115 .
[3]
ANDERSF, IDELA, FELDMANNP, et al. Momentum Entanglement for Atom Interferometry[J]. Phys Rev Lett, 2021, 127(14): 140402. DOI: 10.1103/PhysRevLett.127.140402 .
[4]
ZHOUL, XIONGH, ZUBAIRYM S. Single Atom as a Macroscopic Entanglement Source[J]. Phys Rev A, 2006, 74(2): 022321. DOI: 10.1103/physreva.74.022321 .
[5]
PEZZÉL, SMERZIA. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit[J]. Phys Rev Lett, 2009, 102(10): 100401. DOI: 10.1103/PhysRevLett.102.100401 .
[6]
MØLMERK, SØRENSENA. Multiparticle Entanglement of Hot Trapped Ions[J]. Phys Rev Lett, 1999, 82(9): 1835-1838. DOI: 10.1103/physrevlett.82.1835 .
[7]
LÜCKEB, SCHERERM, KRUSEJ, et al. Twin Matter Waves for Interferometry beyond the Classical Limit[J]. Science, 2011, 334(6057): 773-776. DOI: 10.1126/science.1208798 .
[8]
PEISEJ, KRUSEI, LANGEK, et al. Satisfying the Einstein-Podolsky-Rosen Criterion with Massive Particles[J]. Nat Commun, 2015, 6: 8984. DOI: 10.1038/ncomms9984 .
[9]
HAASF, VOLZJ, GEHRR, et al. Entangled States of more than 40 Atoms in an Optical Fiber Cavity[J]. Science, 2014, 344(6180): 180-183. DOI: 10.1126/science.1248905 .
[10]
GUOY M, ALBARRÁN-ARRIAGADAF, ALAEIANH, et al. Quantum Memristors with Quantum Computers[J]. Phys Rev Applied, 2022, 18(2): 024082. DOI: 10.1103/physrevapplied.18.024082 .
[11]
ELBENA, VERMERSCHB, VAN BIJNENR, et al. Cross-platform Verification of Intermediate Scale Quantum Devices[J]. Phys Rev Lett, 2020, 124(1): 010504. DOI: 10.1103/PhysRevLett.124.010504 .
ZUOZ Y, WANGY J, MAOY Y, et al. Security of Quantum Communications in Oceanic Turbulence[J]. Phys Rev A, 2021, 104(5): 052613. DOI: 10.1103/physreva.104.052613 .
[14]
SAHAD, DAS D, DASA K, et al. Measurement Incompatibility and Quantum Advantage in Communication[J]. Phys Rev A, 2023, 107(6): 062210. DOI: 10.1103/physreva.107.062210 .
[15]
GRIFFITHSR B. Multitime Quantum Communication: Interesting but not Counterfactual[J]. Phys Rev A, 2023, 107(6): 062219. DOI: 10.1103/physreva.107.062219 .
[16]
ZUREKW H. Environment-induced Decoherence and the Transition from Quantum to Classical[J]. Vistas Astron, 1993, 37: 185-196. DOI: 10.1016/0083-6656(93)90030-n .
[17]
ABDEL-ATYM. A Qualitative Perspective on the Dynamics of a Single-cooper-pair Box with a Phase-damped Cavity[J]. J Phys A: Math Theor, 2008, 41(18): 185304. DOI: 10.1088/1751-8113/41/18/185304 .
[18]
ANGELOR M, CARDOSOE S, FURUYAK. Decoherence Induced by a Phase-damping Reservoir[J]. Phys Rev A, 2006, 73(6): 062107. DOI: 10.1103/physreva.73.062107 .
[19]
SINHAK, MEYSTREP, GOLDSCHMIDTE A, et al. Non-markovian Collective Emission from Macroscopically Separated Emitters[J]. Phys Rev Lett, 2020, 124(4): 043603. DOI: 10.1103/PhysRevLett.124.043603 .
[20]
TERRADAS-BRIANSÓS, GONZÁLEZ-GUTIÉRREZC A, NORIF, et al. Ultrastrong Waveguide QED with Giant Atoms[J]. Phys Rev A, 2022, 106(6): 063717. DOI: 10.1103/physreva.106.063717 .
[21]
SAINZI, BJÖRKG. Quantum Error Correction may Delay, but also Cause, Entanglement Sudden Death[J]. Phys Rev A, 2008, 77(5): 052307. DOI: 10.1103/physreva.77.052307 .
[22]
ALTEPETERJ B, HADLEYP G, WENDELKENS M, et al. Experimental Investigation of a Two-qubit Decoherence-free Subspace[J]. Phys Rev Lett, 2004, 92(14): 147901. DOI: 10.1103/PhysRevLett.92.147901 .
[23]
SANTOSA C, CIDRIMA, VILLAS-BOASC J, et al. Generating Long-lived Entangled States with Free-space Collective Spontaneous Emission[J]. Phys Rev A, 2022, 105(5): 053715. DOI: 10.1103/physreva.105.053715 .
[24]
SHAOX Q, ZHENGT Y, OHC H, et al. Dissipative Creation of Three-dimensional Entangled State in Optical Cavity via Spontaneous Emission[J]. Phys Rev A, 2014, 89: 012319. DOI: 10.1103/physreva.89.012319 .
[25]
FIGUEIREDOE G, LINHARESC A, MALBOUISSONA P C, et al. Time Evolution of Entangled Biatomic States in a Cavity[J]. Phys Rev A, 2011, 84(4): 045802. DOI: 10.1103/physreva.84.045802 .
MANDELO, GREINERM, WIDERAA, et al. Coherent Transport of Neutral Atoms in Spin-dependent Optical Lattice Potentials[J]. Phys Rev Lett, 2003, 91(1): 010407. DOI: 10.1103/PhysRevLett.91.010407 .