We study the transport properties of two one-dimensional half-infinite two-component Bose gas systems with different temperatures. By using the Bethe ansatz method and the property that there are infinitely many conserved quantities in the integrable system, a generalized hydrodynamic equation for two-component Bose gas in non-equilibrium state is established. The physical quantities such as energy density, particle number density, energy flow and particle flow distribution of the system under local temperature difference are obtained by numerical calculation of the equation. The results of the non-equilibrium state under temperature difference show that, under the influence of spin excitation at low temperature and weak magnetic field intensity, the energy density distribution and particle density distribution show four plateau characteristics, and the energy flow and particle density flow both peak at the junction point, which reflects the difference from the single-component Bose gas. When the magnetic field strength increases to a certain extent, the spin-down component gradually disappears, so the two-component Bose gas has the same transport properties as the single-component Bose gas.
BLOCHI, DALIBARDJ, ZWERGERW. Many-body Physics with Ultracold Gases[J]. Rev Mod Phys, 2008, 80(3): 885-964. DOI: 10.1103/revmodphys.80.885 .
[2]
CHINC, GRIMMR, JULIENNEP, et al. Feshbach Resonances in Ultracold Gases[J]. Rev Mod Phys, 2010, 82(2): 1225-1286. DOI: 10.1103/revmodphys.82.1225 .
[3]
BASTIANELLOA, DE LUCAA, DOYONB, et al. Thermalization of a Trapped One-dimensional Bose Gas via Diffusion[J]. Phys Rev Lett, 2020, 125(24): 240604. DOI: 10.1103/PhysRevLett.125.240604 .
[4]
SCHEMMERM, BOUCHOULEI, DOYONB, et al. Generalized Hydrodynamics on an Atom Chip[J]. Phys Rev Lett, 2019, 122(9): 090601. DOI: 10.1103/PhysRevLett.122.090601 .
LIEBE H, LINIGERW. Exact Analysis of an Interacting Bose Gas. I. the General Solution and the Ground State[J]. Phys Rev, 1963, 130(4): 1605-1616. DOI: 10.1103/physrev.130.1605 .
[9]
LIEBE H. Exact Analysis of an Interacting Bose Gas. II. the Excitation Spectrum[J]. Phys Rev, 1963, 130(4): 1616-1624. DOI: 10.1103/physrev.130.1616 .
[10]
YANGC N, YANGC P. Thermodynamics of a One-dimensional System of Bosons with Repulsive Delta-function Interaction[J]. J Math Phys, 1969, 10(7): 1115-1122. DOI: 10.1063/1.1664947 .
[11]
YANGC N. Some Exact Results for the Many-body Problem in one Dimension with Repulsive Delta-function Interaction[J]. Phys Rew Lett, 1967, 19: 1312. DOI: 10.1103/PhysRewLett.19.1312 .
[12]
GUANX W, BATCHELORM T, LEEC H. Fermi Gases in one Dimension: From Bethe Ansatz to Experiments[J]. Rev Mod Phys, 2013, 85(4): 1633-1691. DOI: 10.1103/revmodphys.85.1633 .
[13]
CASTRO-ALVAREDOO A, DOYONB, YOSHIMURAT. Emergent Hydrodynamics in Integrable Quantum Systems out of Equilibrium[J]. Phys Rev X, 2016, 6(4): 041065. DOI: 10.1103/physrevx.6.041065 .
[14]
BERTINIB, COLLURAM, DE NARDISJ, et al. Transport in Out-of-equilibrium XXZ Chains: Exact Profiles of Charges and Currents[J]. Phys Rev Lett, 2016, 117(20): 207201. DOI: 10.1103/PhysRevLett.117.207201 .
[15]
DOYONB, YOSHIMURAT. A Note on Generalized Hydrodynamics: Inhomogeneous Fields and other Concepts[J]. SciPost Phys, 2017, 2(2): 14. DOI: 10.21468/scipostphys.2.2.014 .
[16]
BASTIANELLOA, ALBAV, CAUXJ S. Generalized Hydrodynamics with Space-time Inhomogeneous Interactions[J]. Phys Rev Lett, 2019, 123(13): 130602. DOI: 10.1103/PhysRevLett.123.130602 .
[17]
FAVAM, BISWASS, GOPALAKRISHNANS, et al. Hydrodynamic Nonlinear Response of Interacting Integrable Systems[J]. Proc Natl Acad Sci USA, 2021, 118(37): e2106945118. DOI: 10.1073/pnas.2106945118 .
[18]
SCOPAS, CALABRESEP, PIROLIL. Generalized Hydrodynamics of the Repulsive Spin-12 Fermi Gas[J]. Phys Rev B, 2022, 106(13): 134314. DOI: 10.1103/physrevb.106.134314 .
[19]
CAUXJ S, DOYONB, DUBAILJ, et al. Hydrodynamics of the Interacting Bose Gas in the Quantum Newton Cradle Setup[J]. SciPost Phys, 2019, 6(6): 70. DOI: 10.21468/scipostphys.6.6.070 .
[20]
BASTIANELLOA. Sine-Gordon Model from Coupled Condensates: a Generalized Hydrodynamics Viewpoint[J]. Phys Rev B, 2024, 109(3): 035118. DOI: 10.1103/physrevb.109.035118 .
[21]
ERHARDM, SCHMALJOHANNH, KRONJÄGERJ, et al. Measurement of a Mixed-spin-channel Feshbach Resonance in Rb87 [J]. Phys Rev A, 2004, 69(3): 032705. DOI: 10.1103/physreva.69.032705 .
[22]
WIDERAA, MANDELO, GREINERM, et al. Entanglement Interferometry for Precision Measurement of Atomic Scattering Properties[J]. Phys Rev Lett, 2004, 92(16): 160406. DOI: 10.1103/PhysRevLett.92.160406 .
[23]
KLEINEA, KOLLATHC, MCCULLOCHI P, et al. Spin-charge Separation in Two-component Bose Gases[J]. Phys Rev A, 2008, 77: 013607. DOI: 10.1103/physreva.77.013607 .
[24]
EISENBERGE, LIEBE H. Polarization of Interacting Bosons with Spin[J]. Phys Rev Lett, 2002, 89(22): 220403. DOI: 10.1103/PhysRevLett.89.220403 .
[25]
YANGK, LIY Q. Rigorous Proof of Pseudospin Ferromagnetism in Two-component Bosonic Systems with Component-independent Interactions[J]. Int J Mod Phys B, 2003, 17(7): 1027-1033. DOI: 10.1142/s0217979203018041 .
[26]
KLAUSERA, CAUXJ S. Equilibrium Thermodynamic Properties of Interacting Two-component Bosons in one Dimension[J]. Phys Rev A, 2011, 84(3): 033604. DOI: 10.1103/physreva.84.033604 .