In view of the fact that the prevalence of diseases is often disturbed by random factors, this paper studies the chaotic dynamics of a class of SIR model with nonlinear incidence rate through the infection rate disturbed by bounded noise. Based on the homoclinic bifurcation and by using the stochastic Melnikov theory, from the perspective of mathematical theory, the sufficient condition for the possible occurrence of chaos in the model is derived, and the threshold of chaos in the model under bounded noise disturbance is obtained. Moreover, the influence of the noise amplitude on the chaotic dynamic behavior of the SIR model is elucidated. Numerical simulations, including potential, threshold curve graphs, and phase portraits, are used to verify the results of the theoretical analysis. The research results contribute to accurately predicting the disease transmission trends, provide theoretical support for formulating public health prevention and control strategies, and facilitate the scientific prevention and control of epidemics.
MAZ E, ZHOUY C, WANGW D, et al. Mathematical Modeling and Research on Dynamics of Infectious Diseases[M]. Beijing: Science Press, 2004.
[3]
靳祯, 孙桂全, 刘茂省. 网络传染病动力学建模与分析[M]. 北京: 科学出版社, 2014.
[4]
JINZ, SUNG Q, LIUM S. Dynamic Modeling and Analysis of Network Infectious Diseases[M]. Beijing: Science Press, 2014.
[5]
季春燕, 蒋达清. 随机生物模型和传染病模型[M]. 北京: 科学出版社, 2018.
[6]
JIC Y, JIANGD Q. Stochastic Biological Model and Infectious Disease Model[M]. Beijing: Science Press, 2018.
[7]
DERRICKW R, VAN DEN DRIESSCHEP. Homoclinic Orbits in a Disease Transmission Model with Nonlinear Incidence and Nonconstant Population[J]. Discrete Contin Dyn Syst B, 2003, 3(2): 299-309. DOI: 10.3934/dcdsb.2003.3.299 .
[8]
RUANS G, WANGW D. Dynamical Behavior of an Epidemic Model with a Nonlinear Incidence Rate[J]. J Differ Equ, 2003, 188(1): 135-163. DOI: 10.1016/S0022-0396(02)00089-X .
[9]
VAN DEN DRIESSCHEP, WATMOUGHJ. A Simple SIS Epidemic Model with a Backward Bifurcation[J]. J Math Biol, 2000, 40(6): 525-540. DOI: 10.1007/s002850000032 .
[10]
ALEXANDERM E, MOGHADASS M. Periodicity in an Epidemic Model with a Generalized Non-linear Incidence[J]. Math Biosci, 2004, 189(1): 75-96. DOI: 10.1016/j.mbs.2004.01.003 .
[11]
JINY, WANGW D, XIAOS W. An SIRS Model with a Nonlinear Incidence Rate[J]. Chaos Solitons Fractals, 2007, 34(5): 1482-1497. DOI: 10.1016/j.chaos.2006.04.022 .
[12]
JIANGD Q, YUJ J, JIC Y, et al. Asymptotic Behavior of Global Positive Solution to a Stochastic SIR Model[J]. Math Comput Model, 2011, 54(1/2): 221-232. DOI: 10.1016/j.mcm.2011.02.004 .
[13]
LAHROUZA, OMARIL. Extinction and Stationary Distribution of a Stochastic SIRS Epidemic Model with Non-linear Incidence[J]. Stat Probab Lett, 2013, 83(4): 960-968. DOI: 10.1016/j.spl.2012.12.021 .
[14]
CAIY L, JIAOJ J, GUIZ J, et al. Environmental Variability in a Stochastic Epidemic Model[J]. Appl Math Comput, 2018, 329: 210-226. DOI: 10.1016/j.amc.2018.02.009 .
CAOH, FANX L, NIEL F. A Study on a Stochastic SIRS Epidemic Model with Nonlinear Incidence[J]. Math Pract Theory, 2024, 54(10): 144-151.
[17]
ARONJ L, SCHWARTZI B. Seasonality and Period-doubling Bifurcations in an Epidemic Model[J]. J Theor Biol, 1984, 110(4): 665-679. DOI: 10.1016/S0022-5193(84)80150-2 .
[18]
KUZNETSOVY A, PICCARDIC. Bifurcation Analysis Pf Periodic SEIR and SIR Epidemic Models[J]. J Math Biol, 1994, 32(2): 109-121. DOI: 10.1007/BF00163027 .
[19]
SCHAFFERW M, KOT M. Nearly One Dimensional Dynamics in an Epidemic[J]. J Theor Biol, 1985, 112(2): 403-427. DOI: 10.1016/S0022-5193(85)80294-0 .
[20]
ELLNERS, TURCHINP. Chaos in a Noisy World: New Methods and Evidence from Time-series Analysis[J]. Am Nat, 1995, 145(3): 343-375. DOI: 10.1086/285744 .
[21]
GLENDINNINGP, PERRYL P. Melnikov Analysis of Chaos in a Simple Epidemiological Model[J]. J Math Biol, 1997, 35(3): 359-373. DOI: 10.1007/s002850050056 .
[22]
DIALLOO, KONÉY. Melnikov Analysis of Chaos in a General Epidemiological Model[J]. Nonlinear Anal Real World Appl, 2007, 8(1): 20-26. DOI: 10.1016/j.nonrwa.2005.03.032 .
[23]
DIALLOO, KONÉY, MAIGAA. Melnikov Analysis of Chaos in an Epidemiological Model with Almost Periodic Incidence Rates[J]. Appl Math Sci, 2008, 2(28): 1377-1386.
[24]
WIGGINSS. Introduction to Applied Nonlinear Dynamical Systems and Chaos[M]. Cham: Springer New York, 2003. DOI: 10.1007/b97481 .
[25]
LIUW Y, ZHUW Q, HUANGZ L. Effect of Bounded Noise on Chaotic Motion of Duffing Oscillator Under Parametric Excitation[J]. Chaos Solitons Fractals, 2001, 12(3): 527-537. DOI: 10.1016/S0960-0779(00)00002-3 .
ZHUP, RENX M, QINW Y, et al. The Analysis of Melnikov Chaotic Motion Threshold of Nonlinear Bistable Piezoelectric Energy Harvester System Subjected Bounded Noise and Harmonic Excitation[J]. J Northwest Polytech Univ, 2017, 35(4): 669-675. DOI: 10.3969/j.issn.1000-2758.2017.04.017 .
KONGL H, LIUD Y, JIANK L. Study on Chaotic Characteristics of Heterogeneous Physical Double Pendulum[J]. J Chongqing Univ, 2024, 47(2): 106-118. DOI: 10.11835/j.issn.1000-582X.2023.255 .
[30]
GUCKENHEIMERJ, HOLMESP. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. Cham: Springer New York, 1983.