Toxins in the external environment are one of the key factors influencing population dynamics. When a population is exposed to environmental toxins, these toxins continuously accumulate within individuals until they trigger changes in population size. This process requires a certain period of time, known as the toxin deposition delay. In this paper, a reaction-diffusion predator-prey model with toxin deposition delay was established, and the conditions for the occurrence of Hopf bifurcation were obtained via the distribution of the roots of the characteristic equation. The rationality of the theoretical findings was validated by numerical simulations, which indicate that the stability and sustainable evolution of the predator-prey system are detrimentally affected by a larger toxin deposition delay. This study reveals the influence patterns of toxin deposition delay on the dynamics of the predator-prey system, providing a theoretical foundation for investigating the effects of environmental toxins on the dynamical behavior of predator-prey systems.
LUOY H, DUY F. Hopf Bifurcation in a Diffusive Generalist Predator-Prey System with Nonlocal Competition and Time Delay[J]. J Shandong Univ Nat Sci, 2025, 60(4): 72-83. DOI: 10.6040/j.issn.1671-9352.0.2023.338 .
[5]
KEONGA T, SAFUAN HM, JACOBK. Dynamical Behaviours of Prey-Predator Fishery Model with Harvesting Affected by Toxic Substances[J]. Matematika, 2018, 34(1): 143-151. DOI: 10.11113/matematika.v34.n1.1018 .
[6]
DESFORGESJ P, HALLA, MCCONNELLB, et al. Predicting Global Killer Whale Population Collapse from PCB Pollution[J]. Science, 2018, 361(6409): 1373-1376. DOI: 10.1126/science.aat1953 .
[7]
HALLAMT G, CLARKC E, LASSITERR R. Effects of Toxicants on Populations: A Qualitative Approach I. Equilibrium Environmental Exposure[J]. Ecol Model, 1983, 18(3/4): 291-304. DOI: 10.1016/0304-3800(83)90019-4 .
[8]
HALLAMT G, CLARKC E, JORDANG S. Effects of Toxicants on Populations: A Qualitative Approach II. First Order Kinetics[J]. J Math Biol, 1983, 18(1): 25-37. DOI: 10.1007/BF00275908 .
[9]
HALLAMT G, DE LUNAJ T. Effects of Toxicants on Populations: A Qualitative Approach III. Environmental and Food Chain Pathways[J]. J Theor Biol, 1984, 109(3): 411-429. DOI: 10.1016/S0022-5193(84)80090-9 .
[10]
DAS T, MUKHERJEER N, CHAUDHURIK S. Harvesting of a Prey-Predator Fishery in the Presence of Toxicity[J]. Appl Math Model, 2009, 33(5): 2282-2292. DOI: 10.1016/j.apm.2008.06.008 .
[11]
ANGT K, SAFUANH M. Harvesting in a Toxicated Intraguild Predator-Prey Fishery Model with Variable Carrying Capacity[J]. Chaos Solitons Fractals, 2019, 126: 158-168. DOI: 10.1016/j.chaos.2019.06.004 .
[12]
ANGT K, SAFUANH M, SIDHUH S, et al. Impact of Harvesting on a Bioeconomic Predator-Prey Fishery Model Subject to Environmental Toxicant[J]. Bull Math Biol, 2019, 81(7): 2748-2767. DOI: 10.1007/s11538-019-00627-8 .
[13]
HASANM N, UDDINM S, BISWASM H A. Effect of External Wastage and Illegal Harvesting on the Fishery Model of the Halda River Ecosystem in Bangladesh[J]. J Appl Nonlinear Dyn, 2022, 11(1): 33-56. DOI: 10.5890/jand.2022.03.003 .
[14]
YANX, LIY L, GUOG H. Qualitative Analysis on a Diffusive Predator-Prey Model with Toxins[J]. J Math Anal Appl, 2020, 486(1): 123868. DOI: 10.1016/j.jmaa.2020.123868 .
[15]
ZHANGX B, ZHAOH Y. Dynamics and Pattern Formation of a Diffusive Predator-Prey Model in the Presence of Toxicity[J]. Nonlinear Dyn, 2019, 95(3): 2163-2179. DOI: 10.1007/s11071-018-4683-2 .
[16]
MACDONALDN. Biological Delay Systems: Linear Stability Theory[M]. Cambridge: Cambridge University Press, 1989.
[17]
RASHI, SINGHS, UMRAOA K, et al. Cooperation and Harvesting-induced Delays in a Predator–Prey Model with Prey Fear Response: A Crossing Curves Approach[J]. Chaos Solitons Fractals, 2025, 194: 116132. DOI: 10.1016/j.chaos.2025.116132 .
[18]
GLERIAI, DE PAULAE V, MESSIASD, et al. Delayed Induced Bifurcations and Chaos in a Class Struggle Model[J]. J Stat Mech Theory Exp, 2025, 2025(1): 013405. DOI: 10.1088/1742-5468/adac3e .
[19]
MOHAMMEDH A, MUSTAFAA N. Dynamical Analysis of a Delay Two-Prey-One-Predator Model Incorporating Fear Effect in the Growth Rate of Preys[J]. J Appl Math, 2025, 2025(1): 5535248. DOI: 10.1155/jama/5535248 .
[20]
ZHUH L, ZHANGX B, WANGG L, et al. Effect of Toxicant on the Dynamics of a Delayed Diffusive Predator-Prey Model[J]. J Appl Math Comput, 2023, 69(1): 355-379. DOI: 10.1007/s12190-022-01744-9 .
[21]
MUKHOPADHYAYA, CHATTOPADHYAYJ, TAPASWIP K. A Delay Differential Equations Model of Plankton Allelopathy[J]. Math Biosci, 1998, 149(2): 167-189. DOI: 10.1016/S0025-5564(98)00005-4 .
[22]
ABBASS, SEN M, BANERJEEM. Almost Periodic Solution Of a Non-autonomous Model Of Phytoplankton Allelopathy[J]. Nonlinear Dyn, 2012, 67(1): 203-214. DOI: 10.1007/s11071-011-9972-y .
[23]
PAL D, SAMANTAG P, MAHAPATRAG S. Selective Harvesting of Two Competing Fish Species in the Presence of Toxicity with Time Delay[J]. Appl Math Comput, 2017, 313: 74-93. DOI: 10.1016/j.amc.2017.05.069 .
[24]
ZHUM L, XUH J. Dynamics of a Delayed Reaction-diffusion Predator-Prey Model with the Effect of the Toxins[J]. Math Biosci Eng, 2023, 20(4): 6894-6911. DOI: 10.3934/mbe.2023297 .
[25]
WUM, YAOH X. Stability and Bifurcation of a Delayed Diffusive Predator-Prey Model Affected by Toxins[J]. AIMS Math, 2023, 8(9): 21943-21967. DOI: 10.3934/math.20231119 .
[26]
WUM, YAOH X. Bifurcation Analysis of a Delayed Diffusive Predator-Prey Model with Spatial Memory and Toxins[J]. Z Für Angew Math Und Phys, 2024, 75: 25. DOI: 10.1007/s00033-023-02157-9 .
[27]
LESLIEP H. Some Further Notes on the Use of Matrices in Population Mathematics[J]. Biometrika, 1948, 35(3/4): 213-245. DOI: 10.2307/2332342 .
[28]
LESLIEP H, GOWERJ C. The Properties of a Stochastic Model for the Predator-Prey Type of Interaction Between Two Species[J]. Biometrika, 1960, 47(3/4): 219-234. DOI: 10.2307/233294 .
[29]
MAYR M. Stability and Complexity in Model Ecosystems[M]. Princeton: Princeton University Press, 1973.
[30]
MAY X, YANGR Z. Bifurcation Analysis in a Modified Leslie-Gower with Nonlocal Competition and Beddington-Deangelis Functional Response[J]. J Appl Anal Comput, 2025, 15(4): 2152-2184. DOI: 10.11948/20240415 .
[31]
ZHUF Y, YANGR Z. Bifurcation in a Modified Leslie-Gower Model with Nonlocal Competition and Fear Effect[J]. Discrete Contin Dyn Syst B, 2025, 30(8): 2865-2893. DOI: 10.3934/dcdsb.2024195 .
[32]
CHENF D, LIZ, PANQ, et al. Bifurcations in a Leslie-Gower Predator–Prey Model with Strong Allee Effects and Constant Prey Refuges[J]. Chaos Solitons Fractals, 2025, 192: 115994. DOI: 10.1016/j.chaos.2025.115994 .