Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
Anyons lie between bosons and fermions, obeying exotic fractional statistics. Thus, anyonic systems possess many intriguing physical properties. This paper focused on the two-anyon states in the one-dimensional Su-Schrieffer-Heeger (SSH) model. The eigen discrete equations expanded by orthogonal basis vectors were derived. From this, the two-dimensional lattice mapping relation for the SSH model's two-anyon states was obtained. The eigen discrete equations were numerically solved to investigate the energy spectrum characteristics and edge localization rules of the two-anyon states. The results indicate that, when the hopping-loop parameter is tuned to drive the system into either the topologically trivial or nontrivial phase, the eigenenergy spectrum of the two-anyon states exhibits a quantized structure. The findings indicate that the statistical parameter of the anyons does not alter this segmentation feature. Probability density functions were numerically calculated, revealing the existence of edge-bound states in the system when the statistical parameter approaches the pseudo-fermion limit. This study provides important theoretical support for the experimental simulation of few-anyon states in the SSH model.
LAIDLAWM G G, DEWITTC M. Feynman Functional Integrals for Systems of Indistinguishable Particles[J]. Phys Rev D, 1971, 3(6): 1375-1378. DOI: 10.1103/physrevd.3.1375 .
[2]
LEINAASJ M, MYRHEIMJ. On the Theory of Identical Particles[J]. Nuovo Cimento B Ser, 1977, 37(1): 1-23. DOI: 10.1007/BF02727953 .
[3]
WILCZEKF. Magnetic Flux, Angular Momentum, and Statistics[J]. Phys Rev Lett, 1982, 48(17): 1144-1146. DOI: 10.1103/physrevlett.48.1144 .
ZHANGJ, XIEC D, PENGK C, et al. Anyon Statistics with Continuous Variables[J]. Phys Rev A, 2008, 78(5): 052121. DOI: 10.1103/physreva.78.052121 .
[6]
FENGG R, LONGG L, LAFLAMMER. Experimental Simulation of Anyonic Fractional Statistics with an NMR Quantum-information Processor[J]. Phys Rev A, 2013, 88(2): 022305. DOI: 10.1103/physreva.88.022305 .
[7]
JIANGL, BRENNENG K, GORSHKOVA V, et al. Anyonic Interferometry and Protected Memories in Atomic Spin Lattices[J]. Nat Phys, 2008, 4(6): 482-488. DOI: 10.1038/nphys943 .
[8]
KEILMANNT, LANZMICHS, MCCULLOCHI, et al. Statistically Induced Phase Transitions and Anyons in 1D Optical Lattices[J]. Nat Commun, 2011, 2: 361. DOI: 10.1038/ncomms1353 .
[9]
ZHANGW X, YUANH, WANGH T, et al. Observation of Bloch Oscillations Dominated by Effective Anyonic Particle Statistics[J]. Nat Commun, 2022, 13(1): 2392. DOI: 10.1038/s41467-022-29895-0 .
[10]
CAMINOF E, ZHOUW, GOLDMANV J. Realization of a Laughlin Quasiparticle Interferometer: Observation of Fractional Statistics[J]. Phys Rev B, 2005, 72(7): 075342. DOI: 10.1103/physrevb.72.075342 .
[11]
BARTOLOMEIH, KUMARM, BISOGNINR, et al. Fractional Statistics in Anyon Collisions[J]. Science, 2020, 368(6487): 173-177. DOI: 10.1126/science.aaz5601 .
[12]
FRADKINE. Jordan-Wigner Transformation for Quantum-spin Systems in Two Dimensions and Fractional Statistics[J]. Phys Rev Lett, 1989, 63(3): 322-325. DOI: 10.1103/PhysRevLett.63.322 .
[13]
KITAEVA Y. Fault-tolerant Quantum Computation by Anyons[J]. Ann Phys, 2003, 303(1): 2-30. DOI: 10.1016/S0003-4916(02)00018-0 .
[14]
IQBALM, TANTIVASADAKARNN, VERRESENR, et al. Non-abelian Topological Order and Anyons on a Trapped-ion Processor[J]. Nature, 2024, 626(7999): 505-511. DOI: 10.1038/s41586-023-06934-4 .
[15]
ANDERSENT I, LENSKYY D, KECHEDZHIK, et al. Non-abelian Braiding of Graph Vertices in a Superconducting Processor[J]. Nature, 2023, 618(7964): 264-269. DOI: 10.1038/s41586-023-05954-4 .
[16]
XUS B, SUNZ Z, WANGK, et al. Non-abelian Braiding of Fibonacci Anyons with a Superconducting Processor[J]. Nat Phys, 2024, 20(9): 1469-1475. DOI: 10.1038/s41567-024-02529-6 .
WANGL, JIAL F, ZHANGY B. Quantum Dynamics and Correlations of Indistinguishable Anyons in One-dimensional Lattices[J]. Acta Phys Sin, 2022, 71(13): 67-74. DOI: 10.7498/aps.70.20220188 .
[19]
WANGL M, WANGL, ZHANGY B. Quantum Walks of Two Interacting Anyons in One-dimensional Optical Lattices[J]. Phys Rev A, 2014, 90(6): 063618. DOI: 10.1103/physreva.90.063618 .
[20]
KWANJ, SEGURAP, LIY, et al. Realization of One-dimensional Anyons with Arbitrary Statistical Phase[J]. Science, 2024, 386(6725): 1055-1060. DOI: 10.1126/science.adi3252 .
[21]
LAUL L H, DUTTAS. Quantum Walk of Two Anyons across a Statistical Boundary[J]. Phys Rev Research, 2022, 4: L012007. DOI: 10.1103/physrevresearch.4.l012007 .
[22]
ZHENGC C, XIEJ H, ZHANGM, et al. Necessity of Orthogonal Basis Vectors for the Two-anyon Problem in a One-dimensional Lattice[J]. Commun Theor Phys, 2024, 76(12): 125103. DOI: 10.1088/1572-9494/ad7372 .
ZHANGW X, QIANL, SUNH J, et al. Anyonic Bound States in the Continuum[J]. Commun Phys, 2023, 6: 139. DOI: 10.1038/s42005-023-01245-6 .
[25]
OLEKHNON A, ROZENBLITA D, STEPANENKOA A, et al. Topological Transitions Driven by Quantum Statistics and Their Electrical Circuit Emulation[J]. Phys Rev B, 2022, 105(20): 205113. DOI: 10.1103/PhysRevB.105.205113 .
SCHINDLERF, COOKA M, VERGNIORYM G, et al. Higher-order Topological Insulators[J]. Sci Adv, 2018, 4(6): eaat0346. DOI: 10.1126/sciadv.aat0346 .
[28]
SUW P, SCHRIEFFERJ R, HEEGERA J. Solitons in Polyacetylene[J]. Phys Rev Lett, 1979, 42(25): 1698-1701. DOI: 10.1103/physrevlett.42.1698 .
[29]
LIL H, XUZ H, CHENS. Topological Phases of Generalized Su-Schrieffer-Heeger Models[J]. Phys Rev B, 2014, 89(8): 085111. DOI: 10.1103/physrevb.89.085111 .
[30]
GHOSHA, MARTINA M. Edge State Behavior of Interacting Bosons in a Su-Schrieffer-Heeger Lattice[J]. Phys Rev Research, 2025, 7: 013169. DOI: 10.1103/physrevresearch.7.013169 .
[31]
DE LÉSÉLEUCS, LIENHARDV, SCHOLLP, et al. Observation of a Symmetry-protected Topological Phase of Interacting Bosons with Rydberg Atoms[J]. Science, 2019, 365(6455): 775-780. DOI: 10.1126/science.aav9105 .
[32]
ATALAM, AIDELSBURGERM, BARREIROJ T, et al. Direct Measurement of the Zak Phase in Topological Bloch Bands[J]. Nat Phys, 2013, 9(12): 795-800. DOI: 10.1038/nphys2790 .
[33]
JINT, RUGGIEROP, GIAMARCHIT. Bosonization of the Interacting Su-Schrieffer-Heeger Model[J]. Phys Rev B, 2023, 107(20): L201111. DOI: 10.1103/physrevb.107.l201111 .
KUNDUA. Exact Solution of Double δ Function Bose Gas through an Interacting Anyon Gas[J]. Phys Rev Lett, 1999, 83(7): 1275-1278. DOI: 10.1103/physrevlett.83.1275 .