镍基合金在煤灰/烟气中的高温腐蚀研究进展

杜凌霄 ,  丁航 ,  谢云

材料工程 ›› 2025, Vol. 53 ›› Issue (02) : 106 -114.

PDF (1499KB)
材料工程 ›› 2025, Vol. 53 ›› Issue (02) : 106 -114. DOI: 10.11868/j.issn.1001-4381.2024.000114
综述

镍基合金在煤灰/烟气中的高温腐蚀研究进展

作者信息 +

Research progress in high-temperature corrosion of Ni-base alloys in coal ash/flue gas

Author information +
文章历史 +
PDF (1534K)

摘要

为实现经济的绿色、高效、低碳发展,研究具有更高蒸汽参数的700 ℃先进超超临界燃煤发电技术引起了世界各国的广泛关注。然而,随着蒸汽参数的提高和服役环境的恶化,传统的铁素体/马氏体耐热钢和奥氏体耐热钢已无法满足要求,需要考虑采用镍基合金。本文基于采用富氧燃烧技术的700 ℃先进超超临界燃煤锅炉的煤灰/烟气腐蚀环境,综述了镍基合金高温烟气腐蚀和煤灰腐蚀的研究进展,着重梳理了烟气中的CO2,H2O(g),SO2和煤灰中的硫酸盐对镍基合金热生长Cr2O3保护膜的影响。最后,指出煤灰中金属氧化物颗粒以及生物质燃烧产生的高温含Cl腐蚀性气体和KCl熔盐对镍基合金高温腐蚀行为的影响是未来的重点研究方向。

Abstract

To meet the requirements of green, efficient, and low-carbon development, the next generation of 700 ℃ level advanced ultra-supercritical (A-USC) coal-fired power plants with increased steam temperature and pressure has received great attention worldwide. However, the increased steam parameters and harsh service environment corresponding to the A-USC boiler seriously threaten the safe operation of heat-exchanging components. The traditional ferritic/martensitic heat-resistant steels and austenitic stainless steels cannot survive due to their inadequate creep strength and corrosion resistance at temperatures above 700 ℃, and Ni-base alloys are required. Based on the coal ash/flue gas environment related to A-USC boiler adopting oxy-fuel combustion, the research progress in high-temperature corrosion of Ni-base alloys exposed to flue gas and coal ash was summarized, especially focusing on the effect of corrosive CO2, H2O(g), SO2 gases and sulfate salts on the thermal growth of CrO3 protective film on Ni-base alloys. Finally, the effect of oxide particulates in coal ash, Cl-containing gases, and molten KCl salts resulting from biomass combustion on the high-temperature corrosion behavior of Ni-base alloys is the key direction for future research.

Graphical abstract

关键词

镍基合金 / 煤灰/烟气腐蚀 / 高温腐蚀 / 先进超超临界锅炉

Key words

Ni-base alloy / coal ash/flue gas corrosion / high-temperature corrosion / advanced ultra-supercritical boiler

引用本文

引用格式 ▾
杜凌霄,丁航,谢云. 镍基合金在煤灰/烟气中的高温腐蚀研究进展[J]. 材料工程, 2025, 53(02): 106-114 DOI:10.11868/j.issn.1001-4381.2024.000114

登录浏览全文

4963

注册一个新账户 忘记密码

煤炭作为我国第一大能源,到2050 年仍将占一次能源消费比例的35%1,而燃煤电厂是我国最大也是最集中的CO2排放源。随着我国“碳达峰-碳中和”目标的提出,火力发电行业面临巨大而紧迫的CO2减排压力。发展高蒸汽参数(温度和压力)锅炉,提高火力发电机组效率,促进煤炭的高效利用,可从根本上帮助火力发电行业实现资源节约和大规模CO2减排2-3。如将燃煤锅炉的蒸汽参数由600 ℃/25 MPa提高至700 ℃/35 MPa,则可将机组的热效率由约43%提高到约49%,每套机组每年可节约标准煤1.05×105 t,直接减排CO2近2.9×105 t4。因此,发展700 ℃先进超超临界燃煤发电技术(蒸汽温度>700 ℃、压力>35 MPa)被认为是短期内提高火电机组发电效率最直接的方式,成为当前国内外燃煤发电技术的一个研究热点5-7
燃煤锅炉蒸汽温度及压力的提高,对火电机组关键部件(尤其是过热器和再热器)用材料的持久强度、抗氧化/腐蚀性能及组织稳定性提出了更苛刻的要求:在服役温度下105 h持久强度不低于100 MPa,2×105 h腐蚀损失小于2 mm8。目前,在600 ℃蒸汽参数超超临界燃煤锅炉广泛应用的T/P91,T/P92,VM12等铁素体/马氏体耐热钢9-14以及TP304H,Super304H,TP347H,Sanicro25等奥氏体不锈钢15-20难以满足700 ℃超超 临界燃煤锅炉对材料性能的上述要求,需考虑采用具有更高持久强度和耐蚀性能的镍基合金21-24
锅炉受热面合金的高温腐蚀不仅涉及烟气中腐蚀性组分(O2,SO2/SO3,CO2/CO)对合金的高温氧化、硫化、碳化,还同时承受合金表面的碱金属硫酸盐、金属氧化物等煤灰沉积物与合金发生复杂化学反应导致的性能退化1025-27。锅炉管合金受热面长期暴露在烟气和煤灰中,其管外煤灰/烟气腐蚀问题严重,管壁因腐蚀变薄引起的爆管事故导致锅炉停机,对电厂发电效率及经济效益产生巨大影响2628。因此,煤灰/烟气腐蚀行为是决定耐热合金在火电机组应用的关键性能指标之一。本文从富氧燃烧锅炉受热面合金的高温烟气腐蚀环境出发,分别概述锅炉内高温烟气腐蚀和煤灰腐蚀的机理,特别关注烟气中的CO2,H2O(g),SO2和煤灰中的硫酸盐和金属氧化物对镍基合金高温腐蚀行为的影响,最后展望镍基合金在煤灰/烟气环境高温腐蚀的未来研究方向,以期为700 ℃超超临界锅炉耐热合金的选择和设计提供参考。

1 镍基合金的烟气腐蚀行为

褐煤空气燃烧和富氧燃烧产生烟气的成分如表129所示,当锅炉内的煤炭在空气中燃烧时,烟气的主要成分为N2,同时还含有一定量的CO2,H2O,O2和SO2等杂质组分。但是,若采用以高纯度O2为助燃剂的富氧燃烧技术,则烟气中的CO2,H2O和SO2浓度大幅增长,而N2浓度急剧下降。所以,利用富氧燃烧技术可实现烟气中CO2的高浓度富集,随后对富含CO2的烟气进行压缩、冷凝、液化,脱除杂质气体,便可以进行CO2的封存和利用,帮助燃煤电厂实现大规模CO2减排30-32。同时,锅炉内高温部件在含有高浓度CO2,H2O和SO2的富氧燃烧烟气中的高温腐蚀也受到了研究人员越来越多的关注33-35

1.1 CO2对镍基合金高温腐蚀行为的影响

研究发现36-38,含5%~30%(质量分数)Cr系列Ni-Cr合金在Ar-20%CO2(体积分数,下同)气氛中的腐蚀速率基本随着合金Cr含量的增加而降低,且随着温度从650 ℃逐渐升高至700 ℃和800 ℃,合金热生长Cr2O3保护膜所需的临界Cr含量(NCr*)逐渐降低。更重要的是,与在高温O2中腐蚀时相比,Ni-Cr合金在高温CO2气氛中腐蚀时需要更高的Cr含量才能形成单一的Cr2O3保护膜。Ni-30Cr合金在700 ℃腐蚀500 h后的截面SEM形貌如图136所示,Ni-30Cr合金在700 ℃下Ar-20%O2气氛中形成了连续的Cr2O3保护膜,而该合金在Ar-20%CO2气氛中形成了保护性较差的多层氧化膜。并且,检查发现这些Ni-Cr合金内部都无明显的内碳化现象,所以它们在CO2环境下无法形成Cr2O3保护膜的原因与T92,VM12,Sanicro2等91839耐热钢因内部形成大量Cr的碳化物导致基体中Cr的贫化不同。梁志远等40和李玉峰等41将HR230,HR6W和Inconel 740H等商用镍基合金在800~1000 ℃的CO2环境下腐蚀后也没有发生内碳化。

根据Wagner42的经典氧化理论,合金热生长单一Cr2O3保护膜所需的临界Cr含量与Cr2O3膜的生长速率之间存在式(1)所示的关系:

NCr*=VmVCrO1.5πkp2D˜Cr1/2

式中:VmVCrO1.5分别为合金和Cr2O3的摩尔体积;D˜Cr近似为Cr在合金中的扩散系数;kp为Cr2O3膜生长时的抛物线动力学常数。

Nguyen等36和Jiang等38通过计算发现,与在O2中腐蚀时相比,CO2增大了Cr2O3膜的生长速率(kp),根据式(1)可知这会导致Ni-Cr合金在CO2中腐蚀时的NCr*更大,但他们没有给出CO2增大Cr2O3膜生长速率的具体机理。直到最近,Zhu等43基于原位透射电镜观察和密度泛函理论分析的结果指出,CO2分解产生的C进入Cr2O3晶格促进了空位的产生、移动和聚集,这加快了原子在Cr2O3膜中的点阵扩散速率,最终导致Cr2O3膜的生长速率增大。该研究中的原位透射观察为解释CO2对Ni-Cr合金生长Cr2O3膜的影响机理提供了直接的证据,但该研究中Ni-Cr合金氧化温度较低(500 ℃),其对700 ℃高温氧化结果的适用性仍需进一步研究。

1.2 H2O和SO2对镍基合金高温腐蚀行为的影响

除CO2气体外,烟气中的高浓度H2O(g)同样会影响合金的高温腐蚀过程与腐蚀产物。Xie等44-45的研究表明,虽然CO2中加入H2O(g)对气氛的氧分压没有明显影响,但腐蚀产物的形貌却发生了明显变化。当温度不超过700 ℃时,不同Cr含量的Ni-Cr合金表面的氧化膜中基本都存在未被完全氧化的金属Ni,合金的腐蚀速率出现不同程度的下降,而这明显不同于目前普遍报道的H2O(g)加速T91,P92以及Fe-Cr耐热钢高温腐蚀的结果46-48。类似地,研究人员还发现44-4549氧气、空气或CO2中加入H2O(g)也能降低纯Ni或低Cr含量Ni-Cr合金的高温腐蚀速率。Galerie等50认为Ni在H2O(g)中高温腐蚀速率较低与NiO是非酸性p型半导体氧化物的本质有关,且Srisrual等51还指出H2O(g)对不同属性金属氧化物的生长还会产生不同的影响结果。更重要的是,气氛中的H2O(g)还可以吸附在Cr2O3膜的晶界处52-54,通过阻止晶界迁移和晶粒长大而细化氧化膜晶粒,进而增大Cr2O3膜的生长速率。同样根据式(1)可知,这将导致Ni-Cr合金需要更高的Cr含量才能维持单一Cr2O3膜的生长45,所以Ni-25Cr合金在Ar-20%CO2-20%H2O中只能形成多层结构的氧化膜,而在Ar-20%CO2中却能形成单一Cr2O3膜(图23745),显示出H2O(g)对镍基合金高温腐蚀的不利影响。

由于形成金属硫化物所需SO2分压的临界值很小,很难借助净化气体的方法来彻底地防止硫化物的形成55。并且,Cr2O3膜对S元素向内扩散的抑制作用较弱2656,所以即使烟气中的SO2浓度仅为0.5%左右(表1),它与金属反应导致后者发生硫化-氧化,反应过程如式(2)~(428,在整个腐蚀过程中,氧化膜不断增厚并伴随着硫化的持续进行。根据标准Gibbs自由能的变化,不难发现Al,Cr,Co,Ni等金属氧化产物的稳定性比相应硫化产物的稳定性更高57。因此,生成的硫化物易被氧化而释放出活性S继续向合金内部扩散,重新形成新的硫化物,同时硫化物又被氧化释放出活性S,此过程循环往复进行,可产生自催化效果817

2xM+2SO2=2Mx O2+S2
2xM+S2=2Mx S
2Mx S+2O2=S2+2Mx O2

Huczkowski等58-59报道Inconel 617合金在550 ℃和650 ℃不含SO2的烟气中形成了一层连续的Cr2O3保护膜,而在含有0.5%SO2的烟气中形成了许多由硫化物、氧化物及硫酸盐组成的瘤状物,破坏了Cr2O3膜的连续性,导致合金的腐蚀速率明显增大。Stein-Brzozowska等60的研究发现虽然Inconel 617合金在650 ℃含0.5%SO2的烟气中形成了Cr2O3膜,但合金内部依然形成了大量Cr的硫化物,加剧了合金内部Cr的贫化程度,不利于合金表面Cr2O3膜的稳定生长。Oleksak等61也有类似报道,含Cr量较低的263和282合金(19%~20%Cr)在700 ℃含0.1%SO2的95%CO2-4%H2O-1%O2气氛中因S渗透穿过Cr2O3膜而导致其失效,最终生长非保护性的双层结构氧化膜,而Cr含量较高的740H合金(24.5%Cr)则基本不受SO2的影响,这些都反映出增大Cr含量对提高镍基合金抗高温SO2腐蚀的有益作用3962。最近,Sha等63利用原子探针技术研究了SO2渗透穿过Ni-25Cr合金表面热生长Cr2O3膜的微观机制,发现了S在氧化膜晶界处偏聚(图3),认为含S物质主要通过晶界扩散而穿过Cr2O3膜,这也与熟知的S在固体Cr2O3中溶解度可忽略不计的认识一致5564

值得注意的是,燃煤锅炉产生的烟气中总是同时存在CO2,H2O(g)和SO2,所以除了单独讨论它们各自对高温腐蚀的影响外,还应关注它们之间的相互作用对腐蚀过程的影响65。尤其是目前的研究546366指出CO2,H2O和SO2都沿Cr2O3膜晶界扩散,并在此过程中改变Cr2O3膜的形貌或结构,加快合金基体中Cr的消耗速率,从而影响合金的抗高温氧化性能。那么,如何用合适的手段表征它们在晶界处的相互作用应引起研究人员足够的重视,这对于通过控制烟气腐蚀气氛来提高镍基合金的抗高温腐蚀性能具有重要的意义。

2 镍基合金的煤灰腐蚀行为

2.1 硫酸盐对镍基合金高温腐蚀的影响

由于煤粉中含有碱金属元素,在燃烧过程中会生成Na2O,K2O等碱金属氧化物,这些氧化物沉积在受热管表面与硫氧化物反应形成Na2SO4,K2SO4等,当温度超过盐膜熔点时合金发生Ⅰ型热腐蚀(高温热腐蚀)28。发生Ⅰ型热腐蚀的典型温度区间为850~900 ℃,对应Na2SO4的熔点。此外,当这些硫酸盐与合金腐蚀产物(NiO或CoO)以及SO3反应形成Na2SO4-MSO4M=Ni,Co等)等共晶硫酸盐时,盐膜熔点明显下降,合金发生Ⅱ型热腐蚀(低温热腐蚀),其典型温度区间为700 ℃左右26。同时,Fe2O3可与Na2SO4,K2SO4等反应生成Na3Fe(SO43,K3Fe(SO43等复合硫酸盐,它们也可使合金发生低温熔盐热腐蚀,部分硫酸盐和共晶盐的熔点如表267-68所示。以Na2SO4为例,依据熔融Na2SO4分解产生的氧分压、Na2O的活度或SO3的分压所决定的酸碱度55,合金表面的Cr2O3保护性氧化膜可与其反应,发生碱性或酸性溶解而加速合金腐蚀,如式(5)~(769所示。

Na2SO4=SO3+Na2O
Cr2O3+3Na2O+O2=2Na3CrO4
Cr2O3+3Na2SO4=Cr2(SO43+3Na2O
Al2O3+3MoO3(Na2SO4中)=2Al3++3MoO42-
Cr2O3+3MoO3(Na2SO4中)=2Cr3++3MoO42-

3NiO+3MoO3(Na2SO4中)=3Ni2++3MoO42-

(10)

一般认为6268,合金中的Cr含量只有超过25%,才能在750 ℃有效抵御煤灰引起的高温腐蚀,所以Inconel 740合金(质量分数约为25%Cr)比Alloy 617,625,263和282等合金(质量分数为20%~22%Cr)更适宜用作先进超超临界锅炉所需的耐热合金6070。此外,Mo,W,V等元素不利于合金的抗高温腐蚀性能,它们的氧化物容易进入沉积盐中,如式(8)~()所示,使Al2O3,Cr2O3和NiO发生酸性溶解而加速合金腐蚀55图471为某商用NiCoCrMoAl合金(质量分数约为19%Cr)在750 ℃下Ar-60%CO2-20%H2O气氛中形成了较薄的连续Cr2O3膜;但当合金表面涂覆质量分数为50%Na2SO4-50%K2SO4复合盐后,该合金因形成低熔点(687 ℃)的Na2MoO4,导致合金表面Cr2O3膜发生酸性溶解,氧化膜厚度显著增大,合金内部析出富Cr的硫化物,合金的抗高温腐蚀性能明显恶化。此外,Pan等70的研究指出提高镍基合金中Co和Ti的含量有助于促进保护性氧化膜的生长,从而提高合金抗熔融硫酸盐腐蚀和S侵蚀的能力,同时Stein-Brzozowska等60也报道了Ti元素对提高镍基合金抵抗S侵蚀的有益作用。

2.2 金属氧化物对镍基合金高温腐蚀的影响

煤灰沉积物中除了含有硫酸盐以外,还存在大量的金属氧化物,并且依据煤炭产地的不同,煤灰沉积物中金属氧化物的组成也有差异,但主要成分基本都包含SiO2,Al2O3,CaO和Fe2O36067。Fe2O3可与Na2SO4,K2SO4等反应生成Na3Fe(SO43,K3Fe(SO43等复合硫酸盐,导致合金发生低温热腐蚀62。CaO一方面可与Cr2O3氧化膜反应形成CaCr2O4,加速合金的腐蚀72-73,另一方面可与煤灰中的SiO2或Al2O3反应形成化学性质稳定的硅酸钙或铝硅酸钙,降低CaO的不利影响,同时它们还能抑制低熔点硫酸盐的形成,降低合金的高温腐蚀速率68

由于SiO2与Al2O3的化学性质稳定,通常被认为不直接参与合金的高温腐蚀,因而受到的关注较少。研究74发现它们可以在一定程度上起到阻碍腐蚀性介质向内扩散的作用,与此类似,Cai等75也报道了由质量分数为90%氧化物颗粒-10%硫酸盐(Na2SO4-K2SO4)组成的混合物涂覆到Ni-25Cr合金表面后,硫酸盐导致的合金内硫化腐蚀基本被抑制(图5)。此外,Jung等76指出当SiO2颗粒被卷入合金表面热生长的Cr2O3膜后,氧化膜-合金界面处的应变增大,导致Cr2O3膜容易开裂和剥落。最近,Xi等77的研究发现涂覆煤灰(质量分数为100%氧化物)的Ni-25Cr合金在Ar-60%CO2-20%H2O气氛下高温腐蚀后,围绕氧化物颗粒表面的NiO形核速度明显增大,最终形成纳米晶结构的NiO膜包裹住氧化物颗粒,而远离氧化物颗粒的NiO则呈现粗大的柱状晶结构。但是,Cai等75和Xi等77研究所用的Ni-25Cr合金均是粗晶模型合金,晶粒直径达数百乃至数千微米,合金本身在模拟烟气环境中不能形成Cr2O3保护膜,所以上述研究无法阐明金属氧化物颗粒对镍基合金形成Cr2O3保护膜的影响机理。

总的来说,煤灰中的硫酸盐含量较高时会促进复合硫酸盐的形成,同时较高的S分压会加速S向基体内部的扩散,因硫化-氧化而导致的Cr消耗量相应增大,合金的高温腐蚀速率加快。热力学计算表明,由于Cr2O3在Na2SO4 和K2SO4的硫酸盐环境中难以形成K-Na-Cr三元复合共晶盐17,因此提高镍基合金中的Cr含量(质量分数大于25%),从而促进Cr2O3保护膜的形成,有助于提高合金在煤灰中的耐高温腐蚀性能2562。关于金属氧化物颗粒对镍基合金高温腐蚀的影响关注略显不够,尤其是对合金生长Cr2O3保护膜的影响机理则还有待进一步加强研究。

3 结束语

综上所述,镍基合金在煤灰/烟气环境中的抗高温腐蚀性能优于传统的铁素体/马氏体耐热钢和奥氏体不锈钢,但烟气环境中的CO2,H2O(g),SO2以及煤灰中的硫酸盐等都会阻碍或破坏镍基合金表面保护性氧化膜的生长,导致合金抵御煤灰/烟气侵蚀的能力降低。并且,目前关于煤灰中金属氧化物颗粒对镍基合金抗高温腐蚀性能的影响研究较少,尤其是对保护性氧化膜生长的作用机理所知甚少。同时,考虑到生物质直燃发电技术和生物质-燃煤混烧发电技术对大规模CO2减排的有益作用,农作物秸秆等燃烧形成的高温氯腐蚀环境也应引起足够的重视,适用于生物质锅炉和生物质-燃煤混烧锅炉的镍基合金仍有待深入研究。

基于当前存在的问题,未来有关镍基合金在煤灰/烟气环境下高温腐蚀的研究,应重点考虑如下两个方面:

(1)以能够形成Cr2O3膜的Ni-Cr模型合金为基础,探究煤灰中金属氧化物颗粒对镍基合金热生长Cr2O3保护膜的影响,进一步完善煤灰各组分对镍基合金高温腐蚀的作用规律。

(2)探究高温含Cl腐蚀性气体及KCl熔盐对镍基合金高温腐蚀性能的影响,进一步揭示镍基合金在CO2-H2O(g)-SO2-HCl(g)多组元混合气氛中的高温腐蚀过程及机理,为选择和开发适用于生物质及生物质-燃煤混烧锅炉的耐热合金提供参考。

参考文献

[1]

“能源领域咨询研究”综合组. 推动能源生产和消费革命战略研究[J].中国工程科学201517(9): 11-17.

[2]

The Comprehensive Research Group for Energy Consulting and Research. Strategic research on promoting energy revolution of production and consumption [J]. Strategic Study of CAE201517(9): 11-17.

[3]

杨啸峰, 徐雅欣, 鲁金涛, Super 304H钢在模拟烟气腐蚀环境中持久性能与组织演变研究[J]. 热力发电202352(10): 31-38.

[4]

YANG X FXU Y XLU J T, et al. Influence of simulated fireside corrosion on creep rupture properties and microstructure evolution of super 304H steel[J]. Thermal Power Generation202352(10): 31-38.

[5]

熊义, 刘光明, 占阜元, 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为[J]. 中国腐蚀与防护学报202141(3): 369-375.

[6]

XIONG YLIU G MZHAN F Y, et al. Hot corrosion and filure behavior of three thermal spraying coatings in simulated atmosphere/coal ash environment[J]. Journal of Chinese Society for Corrosion and Protection202141(3): 369-375.

[7]

鲁金涛, 谷月峰, 杨珍. 3种700℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为[J]. 腐蚀科学与防护技术201426(3): 205-210.

[8]

LU J TGU Y FYANG Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultrasupercritical power station[J]. Corrosion Science and Protection Technology201426(3): 205-210.

[9]

李博帅, 鲁金涛, 朱明, 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报202135(): 395-401.

[10]

LI B SLU J TZHU M, et al. Corrosion behavior of friction welding joints of Ni-Fe based superalloy in coal ash /flue gas[J]. Materials Reports202135(): 395-401.

[11]

ABE F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering20151(2): 211-224.

[12]

SCHÜTZE MQUADAKKERS W J. Future directions in the field of high-temperature corrosion research[J]. Oxidation of Metals201787(5): 681-704.

[13]

李琰, 鲁金涛, 杨珍, 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报201636(5): 505-512.

[14]

LI YLU J TYANG Z, et al. Effect of sulfur content on corrosion behavior of candidate alloys used for 700 ℃ level A-USC boiler in simulated coal ash and flue gas environments[J]. Journal of Chinese Society for Corrosion and Protection201636(5): 505-512.

[15]

CHANDRA KKRANZMANN ASALIWAN N R, et al. High temperature oxidation behavior of 9-12% Cr ferritic/martensitic steels in a simulated dry oxyfuel environment[J]. Oxidation of Metals201583(3): 291-316.

[16]

SHANG C GXIN LXU Q L, et al. Fireside corrosion of P92 steel with mixed sulfate deposit at 650 ℃[J]. Oxidation of Metals202094: 323-341.

[17]

YAN WWANG WSHAN Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels[J]. Frontiers of Materials Science20137: 1-27.

[18]

DUDZIAK THUSSAIN TSIMMS N J. High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits[J]. Journal of Materials Engineering and Performance201726(1): 84-93.

[19]

KNEŽEVIĆ VBALUN JSAUTHOFF G, et al. Design of martensitic/ferritic heat-resistant steels for application at 650 ℃ with supporting thermodynamic modelling[J]. Materials Science and Engineering: A2008477(1/2): 334-343.

[20]

VISWANATHAN RHENRY J FTANZOSH J, et al. U.S. program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance201322(10): 2904-2915.

[21]

SYED A UHUSSAIN TSIMMS N J, et al. Microscopy of fireside corrosion on superheater materials for oxy-fired pulverised fuel power plants[J]. Materials at High Temperatures201229(3): 219-228.

[22]

刘武, 鲁金涛, 黄锦阳, Super 304H 钢在650 ℃模拟烟气侧腐蚀行为实验[J]. 热力发电201847(6): 78-84.

[23]

LIU WLU J THUNAG J Y, et al. Experimental of the corrosion behavior of super 304H steel in simulative coal ash/flue gas environment at 650 ℃[J]. Thermal Power Generation201847(6): 78-84.

[24]

官宇, 刘光明, 张民强, Sanicro25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报202242(4): 681-686.

[25]

GUAN YLIU G MZHANG M Q, et al. High temperature corrosion behavior of Sanicro25 steel in high-sulfur coal ash/simulated flue gas[J]. Journal of Chinese Society for Corrosion and Protection202242(4): 681-686.

[26]

MONTERO XISHIDA ARUDOLPHI M, et al. Breakaway corrosion of austenitic steel induced by fireside corrosion[J]. Corrosion Science2020173: 108765.

[27]

HUCZKOWSKI PNAJIMA SCHYRKIN A, et al. Corrosion behavior of austenitic stainless steels in oxidizing and reducing gases relevant to oxyfuel power plants[J]. JOM Journal of the Minerals Metals and Materials Society201870(8): 1502-1510.

[28]

陈勇, 梁法光, 于在松, TP347H钢600及650 ℃长时持久性能评估[J]. 热力发电202049(2): 127-130.

[29]

CHEN YLIANG F GYU Z S, et al. Estimation of long-term creep property of TP347H steel at 600 ℃ and 650 ℃[J]. Thermal Power Generation202049(2): 127-130.

[30]

SIMMS N JSUMNER JHUSSAIN T, et al. Fireside issues in advanced power generation systems[J]. Materials Science and Technology201329(7): 804-812.

[31]

PATEL S JDEBARBADILLO J JBAKER B A, et al. Nickel base superalloys for next generation coal fired AUSC power plants[J]. Procedia Engineering201355: 246-252.

[32]

刘正东, 陈正宗, 何西扣, 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报202056(4): 539-548.

[33]

LIU Z DCHEN Z ZHE X K, et al. Systematical innovation of heat resistant materials used for 630-700 ℃ advanced ultra-supercritical (A-USC) fossil fired boilers[J]. Acta Metallurgica Sinica202056(4): 539-548.

[34]

白银, 刘正东, 包汉生, 锅炉用马氏体钢蒸汽氧化行为研究进展[J]. 材料工程202149(6): 77-84.

[35]

BAI YLIU Z DBAO H S, et al. Research progress in steam oxiddation behavior of martensitic steel used for boiler[J]. Journal of Materials Engineering202149(6): 77-84.

[36]

曹超, 蒋成洋, 鲁金涛, 不同Cr含量的奥氏体不锈钢在700 ℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报202258(1): 67-74.

[37]

CAO CJIANG C YLU J T, et al. Corrosion behavior of austeniticstainless steel with different Cr contents in 700 ℃ coal ash/high sulfurflue-gas environment[J]. Acta Metallurgica Sinica202258(1): 67-74.

[38]

杨啸峰, 徐雅欣, 黄锦阳, 火电机组锅炉受热面合金烟气腐蚀与应力协同作用失效行为研究进展[J]. 材料工程202250(5): 100-111.

[39]

YANG X FXU Y XHUANG M Y, et al. Research progress in failure of alloys for hot-section components in thermal power plant boilers under synergism of fireside corrosion and stress[J]. Journal of Materials Engineering202250(5): 100-111.

[40]

FU CLI YWANG Y F. Microstructure and corrosion resistance of NiCr-based coatings in simulated coal-fired boiler conditions[J]. Oxidation of Metals202195(1/2): 45-63.

[41]

张世宏, 胡凯, 刘侠, 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报202258(3): 272-294.

[42]

ZHANG S HHU KLIU X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metallurgica Sinica202258(3): 272-294.

[43]

BORDENET B. Influence of novel cycle concepts on the high-temperature corrosion of power plants[J]. Materials and Corrosion200859(5): 361-366.

[44]

江蓉, 张进, 李小姗, 基于富氧燃烧的CO2压缩纯化技术研究进展[J]. 煤炭学报202247(11): 3914-3925.

[45]

JIANG RZHANG JLI X S, et al. Research progress of CO2 compresion and purification technology based on oxy-fuel combustion[J].Journal of China Coal Society202247(11):3914-3925.

[46]

STANGER RWALL TSPÖRL R, et al. Oxyfuel combustion for CO2 capture in power plants[J]. International Journal of Greenhouse Gas Control201540: 55-125.

[47]

ZHENG CLIU ZXIANG J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology[J]. Engineering20151(1): 139-149.

[48]

STEIN-BRZOZOWSKA GNORLING RVIKLUND P, et al. Fireside corrosion during oxyfuel combustion considering various SO2 contents[J]. Energy Procedia201451: 135-147.

[49]

TOFTEGAARD M BBRIX JJENSEN P A, et al. Oxy-fuel combustion of solid fuels[J]. Progress in Energy and Combustion Science201036(5): 581-625.

[50]

SCHEFFKNECHT GAL-MAKHADMEH LSCHNELL U, et al. Oxy-fuel coal combustion-a review of the current state-of-the-art[J]. International Journal of Greenhouse Gas Control20115: S16-S35.

[51]

NGUYEN T DXIE YDING S, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700 ℃[J]. Oxidation of Metals201787(5): 605-616.

[52]

XIE YZHANG JYOUNG D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere[J]. Journal of the Electrochemical Society2017164(6): 285-293.

[53]

JIANG CXIE YKONG C, et al. Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650 ℃[J]. Corrosion Science2020174: 108801.

[54]

LIANG ZYU MGUI Y, et al. Corrosion behavior of heat-resistant materials in high-temperature carbon dioxide environment[J]. JOM Journal of the Minerals Metals and Materials Society201870(8): 1464-1470.

[55]

梁志远, 徐一鸣, 王硕, 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报202242(4): 613-620.

[56]

LIANG Z YXU Y MWANG S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment[J]. Journal of Chinese Society for Corrosion and Protection202242(4): 613-620.

[57]

李玉峰, 梁志远, 邓世丰, 高温CO2环境下耐热合金HR6W和740H的腐蚀行为[J]. 西安交通大学学报202054(5): 179-188.

[58]

LI Y FLIANG Z YDENG S F, et al. Corrosion behavior of heat resistant alloys HR6W and 740H in high-temperature carbon dioxide environment[J]. Journal of Xi’an Jiaotong University202054(5): 179-188.

[59]

WAGNER C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys[J]. Journal of the Electrochemical Society195299(10): 369-380.

[60]

ZHU DCHEN JCHEN J, et al. Atomic origin of CO2-promoted oxidation dynamics of chromia-forming alloys[J]. Acta Materialia2024264: 119578.

[61]

XIE YZHANG JYOUNG D J. Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650 ℃[J]. Corrosion Science2018136: 311-325.

[62]

XIE YNGUYEN T DZHANG J, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 ℃ and 800 ℃[J]. Corrosion Science2019146: 28-43.

[63]

OTHMAN N KZHANG J QYOUNG D J. Water vapour effects on Fe-Cr alloy oxidation[J]. Oxidation of Metals201073(1/2): 337-352.

[64]

MEIER G HJUNG KMU N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys[J]. Oxidation of Metals201074(5): 319-340.

[65]

ABELLÁN J POLSZEWSKI TMEIER G H, et al. The oxidation behaviour of the 9% Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments[J]. International Journal of Materials Research2010101(2): 287-299.

[66]

AUCHI MHAYASHI STOYOTA K, et al. Effect of water vapor on the high-temperature oxidation of pure Ni[J]. Oxidation of Metals201278(1): 51-61.

[67]

GALERIE AWOUTERS YCAILLET M. The kinetic behavior of metals in water vapour at high temperatures: can general rules be proposed?[J]. Materials Science Forum2001369/372: 231-238.

[68]

SRISRUAL APETIT J PWOUTERS Y, et al. The effect of water vapor on thermal oxide grown on Inconel 690[J]. Applied Mechanics and Materials2014670/671: 74-81.

[69]

SIMON DGORR BHÄNSEL M, et al. Effect of in-situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000 ℃ in atmospheres with and without water vapour[J]. Materials at High Temperatures201532(1/2): 238-247.

[70]

ZUREK JYOUNG D JESSUMAN E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases[J]. Materials Science and Engineering: A2008477(1/2): 259-270.

[71]

YOUNG D J. Effects of water vapour on the oxidation of chromia formers[J].Materials Science Forum2008595:1189-1197.

[72]

BIRKS NMEIER G HPETTIT F K. 金属高温氧化导论[M].辛丽, 王文译. 2 版. 北京: 高等教育出版社, 2010.

[73]

BIRKS NMEIER G HPETTIT F. Introduction to the high-temperature oxidation of metals [M].translated by XIN L, WANG W. 2nd ed. Beijing: Higher Education Press, 2010.

[74]

张知翔, 成丁南, 边宝, 水冷壁材料在模拟烟气中的高温腐蚀研究[J]. 材料工程2011(4): 14-19.

[75]

ZHANG Z XCHENG D NBIAN B, et al. Study on high temperature corrosion of water wall materials in simulated furnace atmosphere[J].Journal of Materials Engineering2011(4): 14-19.

[76]

OU X MSUN ZSUN M, et al. Hot-corrosion mechanism of Ni-Cr coatings at 650 ℃ under different simulated corrosion conditions[J]. Journal of China University of Mining and Technology200818(3): 444-448.

[77]

HUCZKOWSKI PYOUNG D JOLSZEWSKI T, et al. Effect of sulphur on the oxidation behaviour of possible construction materials for heat exchangers in oxyfuel plants in the temperature range 550-700 ℃[J]. Oxidation of Metals201889: 651-681.

[78]

HUCZKOWSKI PNAJIMA SCHYRKIN A, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases relevant to oxyfuel power plants[J]. Materials at High Temperatures201835(1/3): 275-290.

[79]

STEIN-BRZOZOWSKA GFLÓREZ D MMAIER J, et al. Nickel-base superalloys for ultra-supercritical coal-fired power plants: fireside corrosion. laboratory studies and power plant exposures[J]. Fuel2013108: 521-533.

[80]

OLEKSAK R PTYLCZAK J HTEETER L, et al. High-temperature corrosion of chromia-forming Ni-based alloys in CO2 containing impurities[J]. High Temperature Corrosion of Materials2023100: 597-620.

[81]

ZENG ZNATESAN KCAI Z, et al. Effect of coal ash on the performance of alloys in simulated oxy-fuel environments[J]. Fuel2014117: 133-145.

[82]

SHA CYANG LCAIRNEY J M, et al. Sulphur diffusion through a growing chromia scale and effects of water vapour[J]. Corrosion Science2023222: 111410.

[83]

BENLYAMANI MAJERSCH FKENNEDY G. Solubility of sulfur in pure Cr2O3 at 1000 ℃[J]. Oxidation of Metals198829(3): 203-216.

[84]

YU CNGUYEN T DZHANG J Q, et al. Corrosion of Fe-9Cr-(Mn, Si) alloys in CO2-H2O-SO2 gases[J]. Corrosion Science201598: 516-529.

[85]

NGUYEN T DLA FONTAINE AYANG L, et al. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas[J]. Corrosion Science2018132: 125-135.

[86]

MEIER G H. Current aspects of deposit-induced corrosion[J]. Oxidation of Metals202298: 1-41.

[87]

ZENG ZNATESAN KCAI Z, et al. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment[J]. Fuel2016178: 10-22.

[88]

HU SFINKLEA HLIU X. A review on molten sulfate salts induced hot corrosion[J]. Journal of Materials Science & Technology202190: 243-254.

[89]

PAN PLI TWANG Y, et al. Effect of temperature on hot corrosion of nickel-based alloys for 700 ℃ A-USC power plants[J]. Corrosion Science2022203: 110350.

[90]

XIE YCAI YZHANG J, et al. Effects of sulphate deposits on corrosion behaviour of Ni-base alloys in wet CO2 gas at 750 ℃[J]. Corrosion Science2021181: 109227.

[91]

GHENO TMEIER G HGLEESON B. High temperature reaction of mcraly coating compositions with cao deposits[J]. Oxidation of Metals201584(1): 185-209.

[92]

GHENO TGLEESON B. Modes of deposit-induced accelerated attack of MCrAlY systems at 1100 ℃[J]. Oxidation of Metals201787(1): 249-270.

[93]

JA'BAZ ICHEN JETSCHMANN B, et al. High-temperature tube corrosion upon the interaction with Victorian brown coal fly ash under the oxy-fuel combustion condition[J]. Proceedings of the Combustion Institute201736(3):3941-3948.

[94]

CAI YXI XZHANG J, et al. Effects of salt and ash deposits on corrosion behaviour of Ni-25Cr in Ar-60CO2-20H2O gas at 650 ℃[J]. Materials at High Temperatures202340(4): 260-271.

[95]

JUNG KKIM C SPETTIT F S, et al. Interfacial failure via encapsulation of external particulates in an outward-growing thermal oxide[J]. Journal of Power Sources2011196(10): 4686-4694.

[96]

XI XSHEN ZZHANG J, et al. Nickel oxide scale microstructure and accelerated growth in combustion flue gas: effect of ash particles[J]. Corrosion Science2023218: 111153.

基金资助

国家自然科学基金项目(52301089)

江西省重点研发计划项目(20232BBE50007)

江西省自然科学基金项目(20224BAB214018)

AI Summary AI Mindmap
PDF (1499KB)

439

访问

0

被引

详细

导航
相关文章

AI思维导图

/