高温红外隐身材料研究进展
Research progress in high-temperature infrared stealth materials
航空发动机热端部位的红外辐射容易被红外探测器所探测,不利于飞行器在复杂的监测环境下服役。如何降低航空发动机高温部位的红外辐射特征,提高航空发动机的高温红外隐身性能是目前亟须解决的难题。本文介绍了在高温环境中具有应用前景的金属类红外隐身材料、无机非金属类红外隐身材料和结构类红外隐身材料的红外隐身机理和研究状况,并指出了高温红外隐身材料的未来发展趋势,包括需要进一步研究高温红外隐身材料的失效机理、与控温方式相结合以满足更高温度的隐身需求和有必要发展综合隐身性能来满足飞行器在复杂环境下的隐身能力。
Infrared radiation at the hot-section of the aero engine is easily detected by infrared detectors, which is not conducive to aircraft service in a complex monitoring environment. How to reduce the infrared radiation characteristics of high-temperature parts of aero engine and improve the high-temperature infrared stealth performance of the aero engine is a difficult problem that needs to be solved. This paper discusses the infrared stealth mechanisms and research status of metal-based, inorganic non-metallic, and structural infrared stealth materials with potential applications in high-temperature environments. It also highlights the future development trends for high-temperature infrared stealth materials, including the need for further investigation into the failure mechanisms of these materials, the integration of temperature control methods to meet higher-temperature stealth requirements, and the necessity to develop comprehensive stealth performance to ensure the capability of aircraft to remain stealthy in complex environments.
infrared stealth / high temperature / low infrared emissivity / infrared detection
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
刘鹏,殷举航,罗雄光, 高温红外隐身涂层材料研究进展[J]. 材料研究与应用,2022,16(1):57-67. |
| [5] |
|
| [6] |
|
| [7] |
徐顶国,桑建华,罗明东. 无人机蒙皮红外辐射特征研究[J]. 红外与激光工程,2013,42(4):880-884. |
| [8] |
|
| [9] |
吴剑锋,何广军,赵玉芹. 飞机尾向的红外辐射特性计算[J]. 空军工程大学学报(自然科学版),2006,7(6): 26-28. |
| [10] |
|
| [11] |
|
| [12] |
刁训刚,郝维昌,王天民, 低发射率薄膜的红外隐身特性研究[J]. 宇航材料工艺,2007,37(5):39-42. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
刘国圣. 水热合成CeO2基耐高温低发射率涂层的制备及性能研究[D]. 南京:南京航空航天大学,2020. |
| [17] |
|
| [18] |
|
| [19] |
黄文质,刘海韬. 高温红外低发射率涂层研究现状[J]. 材料导报,2018,32():385-389. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
叶圣天,成声月,刘朝辉, 8~14 μm波段水性红外隐身涂料研究[J]. 红外与激光工程,2016,45(2):79-84. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
李俊生,程海峰,周永江, 耐高温、高结合强度的低红外发射率复合涂层及其制备方法:CN 103963380A[P]. 2014-08-06. |
| [28] |
|
| [29] |
刘海韬,程海峰,田浩, 耐高温、高结合强度的低红外发射率复合涂层、带涂层的金属合金材料及其制备方法:CN 104818482B[P]. 2017-07-21. |
| [30] |
|
| [31] |
黄文质,刘海韬. 一种耐高温雷达与红外兼容隐身涂层及其制备方法:CN 108212722A[P]. 2018-06-29. |
| [32] |
|
| [33] |
张伟钢,徐国跃,薛连海. 聚氨酯/青铜-Sm2O3复合涂层的近红外吸收与发射率性能[J]. 材料工程,2016,44(1): 115-119. |
| [34] |
|
| [35] |
李靖宇,杜仕国,施冬梅, 红外隐身涂料粘合剂的研究进展[J]. 表面技术,2009,38(4):72-73. |
| [36] |
|
| [37] |
丁儒雅,徐国跃,张伟钢, 固化温度对低发射率涂层综合性能的影响[J]. 兵器材料科学与工程,2012,35(6):4-7. |
| [38] |
|
| [39] |
李叶,张志毅,寿金泉, 低红外发射率涂层的制备及耐高温性能研究[J],中国胶粘剂,2015,24(9):37-40. |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
任菁. 低发射率硫化物半导体颜料的制备及机理研究[D]. 南京:南京航空航天大学,2007. |
| [48] |
|
| [49] |
|
| [50] |
胡晨. 3~5 μm波段低发射率耐热型涂料研究[D]. 南京:南京航空航天大学,2010. |
| [51] |
|
| [52] |
郭腾超,徐国跃,陈砚朋, 硅酸盐基耐高温涂层的制备及发射率研究[J].红外技术,2010,32(12):696-700. |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
蒋勇,徐国跃,郭腾超, 热处理对氧化铈粉体3~5 μm波段红外发射率的影响[J].红外技术,2011,33(12):699-703. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
殷举航. 基于等离子喷涂技术的YSZ涂层沉积机理和性能研究[D].成都:电子科技大学,2023. |
| [64] |
|
| [65] |
王慧慧,徐国跃,张建超, 单项掺杂对8YSZ粉体3~5 μm波段发射率的影响[J]. 兵器材料科学与工程,2015,38(2):23-27. |
| [66] |
|
| [67] |
王自荣,余大斌. ITO涂料在8~14 μm波段红外发射率的研究[J]. 红外技术,1999,21(1): 41-44. |
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
刘嘉玮,王建江,许宝才, 钙钛矿型La1- x Ba x MnO3(0≤x≤0.5)的红外发射率和微波吸收性能[J]. 航空材料学报,2017,37(5): 29-34. |
| [75] |
|
| [76] |
喻亮,茹红强,岳新艳, ZrB2电子结构和光学声学性质的第一性原理计算[J]. 东北大学学报(自然科学版),2011,32(2): 254-257. |
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
张敏. 硼化锆薄膜的制备与红外辐射特性研究[D]. 成都:电子科技大学,2021. |
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
李恩博,高元明,张鹏, 高温低红外辐射表面材料研究进展[J]. 航空制造技术,2020,63(17):22-28. |
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
/
| 〈 |
|
〉 |