SiCf/SiC陶瓷基复合材料制备技术研究进展
Research progress in preparation technology of SiCf/SiC ceramic matrix composites
连续碳化硅纤维增强碳化硅(SiCf/SiC)陶瓷基复合材料具有轻质、高强韧、耐高温、抗氧化等优异的综合性能,是在航空涡轮发动机热端部件和新型空天飞行器防热结构等领域具有广泛应用前景的先进材料。本文从SiCf/SiC复合材料的四大组成单元出发,综述了SiC纤维、界面相、SiC基体和环境障涂层(EBC)制备技术研究进展,并提出了SiCf/SiC复合材料未来发展需要突破的瓶颈问题。目前第三代SiC纤维具有近化学计量的C/Si比,并且具有优异的高温力学性能和耐温性能。界面相的结构和抗氧化性能对SiCf/SiC复合材料在高温有氧环境下的力学性能起着决定性作用,探索与SiC相匹配且具有优异抗氧化性能的新型界面相,并且实现连续均匀制备,是界面相发展的研究重点。SiCf/SiC复合材料常用的制备方法主要有PIP法、CVI法和RMI法,但是单一方法已经无法满足复合材料的性能需求,由此研究者主要开展了CVI-PIP联用工艺制备SiCf/SiC复合材料的工艺参数、微观结构和力学性能等研究。环境障涂层作为防止SiCf/SiC复合材料受到外界环境侵蚀的屏障,在第三代Si/Yb2Si2O7环境障涂层体系基础上,通过补充Si源、自愈合等策略可制备得到高可靠、长寿命的环境障涂层,从而提高SiCf/SiC复合材料构件的服役寿命。为了实现SiCf/SiC复合材料的广泛应用,未来还需要在复合材料结构设计、低成本制造、新型抗氧化界面相开发、抗开裂、抗剥落的新型环境障涂层研制、失效分析与寿命预测等方面开展进一步的研究工作。
Continuous silicon carbide fiber reinforced silicon carbide (SiCf/SiC) ceramic matrix composites are considered as the most promising advanced materials in the fields of hot end components of aviation turbine engines and thermal protection structures of novel aerospace aircraft due to their excellent comprehensive properties, such as light weight, high strength and toughness, high temperature resistance, and oxidation resistance. In this paper, the preparation technology of the four elementary components of SiCf/SiC composites, such as SiC fiber, interphase, SiC matrix,and environmental barrier coating (EBC), has been systematically reviewed, and the bottleneck problems of SiCf/SiC composites in the future development have been proposed. The current third-generation SiC fibers possess a near stoichiometric C/Si ratio and have excellent high temperature stability and mechanical properties. The structure and oxidation resistance of interphase plays a decisive role in the mechanical properties of SiCf/SiC composites in harsh service environments. The research frontiers are to develop novel interphases that matches SiC fiber and has excellent oxidation resistance,achieving continuous and uniform preparations of such interphases. PIP, CVI and RMI techniques are commonly employed to prepare SiCf/SiC composites, but a single technique no longer meets the performance requirements of the composite. Hence, a hybrid technique such as the hybrid CVI-PIP technique has been employed to manufacture SiCf/SiC composites, through which processing parameters, microstructures, and mechanical properties have been widely investigated. Environmental barrier coatings are used as a barrier to prevent SiCf/SiC composites from corrosion and degradation by external corrosive environments. Based on the third generation Si/Yb2Si2O7 EBC system, highly reliable and long life-span environmental barrier coatings can be prepared by supplementing Si sources and self-healing cracks, thereby greatly improving the service life of SiCf/SiC composites components. To achieve a wider application of SiCf/SiC composites, further research work should be carried out in areas such as the structural design of composite components, low-cost manufacturing, development of new anti-oxidation interphases, development of novel EBCs with anti-peeling off and anti-cracking natures, failure analysis and life prediction of composite.
SiCf/SiC复合材料 / SiC纤维 / 界面相 / EBC涂层 / 制备工艺
SiCf/SiC composites / SiC fiber / interfacial phase / EBC coating / preparation process
| [1] |
|
| [2] |
袁钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. 无机材料学报, 2016, 31(11): 1157-1165. |
| [3] |
|
| [4] |
刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10. |
| [5] |
|
| [6] |
马昕, 刘海韬, 孙逊. 连续纤维增强陶瓷基复合材料连接件的研究进展[J]. 材料工程, 2023, 51(8): 1-11. |
| [7] |
|
| [8] |
周亦人, 沈自才, 齐振一, 中国航天科技发展对高性能材料的需求[J]. 材料工程, 2021, 49(11): 41-50. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
冯春祥, 薛金根, 宋永才. SiC纤维研究进展[J]. 高科技纤维与应用, 2003, 28(1): 15-19. |
| [14] |
|
| [15] |
|
| [16] |
王得印,毛仙鹤,宋永才, 一种具有稳定富碳表层的SiC纤维的制备与性能[J]. 无机材料学报, 2009, 24(6): 1209-1213. |
| [17] |
|
| [18] |
韦鑫, 杨明杰, 赵领航, 高性能碳化硅纤维研究进展[J]. 棉纺织技术, 2018, 46(10): 74-77. |
| [19] |
|
| [20] |
陈代荣, 周新贵, 朱陆益, 连续陶瓷纤维的制备,结构,性能和应用:研究现状及发展方向[J]. 现代技术陶瓷, 2018, 39(3): 151-222. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
王堋人, 苟燕子, 王浩. 第三代SiC纤维及其在核能领域的应用现状[J]. 无机材料学报, 2020, 35(5): 525-531. |
| [27] |
|
| [28] |
潘影. 平纹布和斜纹布铺层结构对SiCf/SiC过滤材料性能的影响[D]. 南京: 南京航空航天大学, 2018. |
| [29] |
|
| [30] |
刘时剑, 邱海鹏, 刘善华, SiC缝合纤维的引入方式对2D SiC/SiC复合材料性能的影响[J]. 陶瓷学报, 2021, 42(5): 801-806. |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
韩振宇, 梅海洋, 付云忠, 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46(11): 25-36. |
| [35] |
|
| [36] |
丁丹烨. 三维编织复合材料编织几何和力学性能的细观分析[D]. 南京: 南京航空航天大学, 2008. |
| [37] |
|
| [38] |
蒋丽娟, 侯振华, 周寅智. 预制体结构及界面对三维SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020, 37(3): 642-649. |
| [39] |
|
| [40] |
|
| [41] |
郝浩辉, 党潇琳, 马晓康, 陶瓷基复合材料界面微区力学行为的研究进展[J]. 材料工程, 2024, 52(4): 1-11. |
| [42] |
|
| [43] |
何宗倍, 张瑞谦, 付道贵, 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31. |
| [44] |
|
| [45] |
康伟峰, 邢欣, 张禹, SiC纤维表面涂层的制备及其作用研究进展[J]. 材料工程, 2023, 51(8): 33-45. |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
张金, 刘荣军, 王衍飞, 连续纤维增强陶瓷基复合材料新型界面相研究进展[J]. 硅酸盐学报, 2021, 49(9): 1869-1877. |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
王鹏, 王庆雷, 张翔宇, 层状硅酸钇改性SiCf/SiC复合材料湿氧化行为研究[J]. 无机材料学报, 2019, 34(8): 904-908. |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
柏跃磊, 尹航, 宋广平, 高韧性三元层状陶瓷:从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1-23. |
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
杨博, 余金山, 顾全超, SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056. |
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
张冰玉, 王岭, 王晓猛, 不同先驱体制备C/SiC复合材料及其浸渍行为[J]. 无机材料学报, 2020, 35(9): 1017-1022. |
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
罗征. 采用LPVCS为先驱体制备SiC/SiC复合材料及其高温性能研究[D]. 长沙: 国防科学技术大学, 2014. |
| [99] |
|
| [100] |
汤哲鹏, 王梦千, 董凯. 碳化硅CVI工艺沉积动力学模拟研究[J]. 中国陶瓷工业, 2023, 30(1): 1-6. |
| [101] |
|
| [102] |
李鸣, 张瑞谦, 何宗倍, 耐事故SiCf/SiC复合材料包壳管CVI+无模具NITE制备技术研究[J]. 核动力工程, 2020, 41(): 169-173. |
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
赵文青, 齐哲, 吕晓旭, 界面层对CVI-mini SiCf/SiC复合材料力学性能的影响[J]. 材料工程, 2021, 49(7): 71-77. |
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
郭广达, 成来飞, 叶昉. 航空发动机热结构部件的RMI工艺研究进展[J]. 航空科学技术, 2022, 33(8): 1-8. |
| [116] |
|
| [117] |
刘虎, 杨金华, 陈子木, 熔融渗硅工艺制备的SiCf/SiC复合材料微观结构与性能[J]. 宇航材料工艺, 2020, 50(6): 48-54. |
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
焦健, 杨金华, 李宝伟. 熔渗法制备陶瓷基复合材料的研究进展[J]. 航空制造技术, 2015, 58(): 1-6. |
| [122] |
|
| [123] |
胡建宝, 杨金山, 张翔宇, 高致密反应烧结SiCf/SiC复合材料的微观结构与性能[J]. 航空制造技术, 2018, 61(14): 16-21. |
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
杨金华, 姜卓钰, 吕晓旭, 熔融渗硅处理对PIP工艺制备的SiCf/SiC复合材料性能影响[J]. 陶瓷学报, 2019, 40(6): 833-839. |
| [128] |
|
| [129] |
曹宇, 刘荣军, 曹英斌, 素坯密度对气相渗硅制备C/C-SiC复合材料结构与性能的影响[J]. 材料工程, 2016, 44(7): 19-25. |
| [130] |
|
| [131] |
孙国帅, 刘荣军, 曹英斌, CVI-GSI工艺制备C/C-SiC复合材料的组成结构与力学性能[J]. 材料工程, 2017, 45(12): 58-64. |
| [132] |
|
| [133] |
缪花明, 刘荣军, 王衍飞, 碳纤维预制体结构对CVI-GSI C/C-SiC复合材料微观结构与力学性能的影响[J]. 材料工程, 2023, 51(8): 142-148. |
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
周邦阳, 崔永静, 王长亮, 稀土硅酸盐环境障涂层研究进展[J]. 材料工程, 2023, 51(12): 12-23. |
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
刘虎, 杨金华, 周怡然, 国外航空发动机用SiCf/SiC复合材料的材料级性能测试研究进展[J]. 材料工程, 2018, 46(11): 1-12. |
| [157] |
|
| [158] |
刘虎, 杨金华, 焦健. 航空发动机用连续SiCf/SiC复合材料制备工艺及应用前景[J]. 航空制造技术, 2017, 60(16): 90-95. |
| [159] |
|
国家重点研发计划项目(2022YFB3707701)
国家自然科学基金项目(U2241239)
/
| 〈 |
|
〉 |